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TransFusionOdom: Transformer-Based
LiDAR-Inertial Fusion Odometry Estimation

Leyuan Sun , Guanqun Ding, Yue Qiu, Yusuke Yoshiyasu , Member, IEEE,
and Fumio Kanehiro , Member, IEEE

Abstract—Multimodal fusion of sensors is a commonly
used approach to enhance the performance of odome-
try estimation, which is also a fundamental module for
mobile robots. Recently, learning-based approaches garner
the attention in this field, due to their robust nonhand-
crafted designs. However, the question of How to perform
fusion among different modalities in a supervised sensor
fusion odometry estimation task? is one of the challenging
issues still remaining. Some simple operations, such as
elementwise summation and concatenation, are not capa-
ble of assigning adaptive attentional weights to incorporate
different modalities efficiently, which makes it difficult to
achieve competitive odometry results. Besides, the Trans-
former architecture has shown potential for multimodal
fusion tasks, particularly in the domains of vision with lan-
guage. In this work, we propose an end-to-end supervised
Transformer-based LiDAR-Inertial fusion framework (namely
TransFusionOdom) for odometry estimation. The multiattention fusion module demonstrates different fusion approaches
for homogeneous and heterogeneous modalities to address the overfitting problem that can arise from blindly increasing
the complexity of the model. Additionally, to interpret the learning process of the Transformer-based multimodal
interactions, a general visualization approach is introduced to illustrate the interactions between modalities. Moreover,
exhaustive ablation studies evaluate different multimodal fusion strategies to verify the performance of the proposed
fusion strategy. A synthetic multimodal dataset is made public to validate the generalization ability of the proposed fusion
strategy, which also works for other combinations of different modalities. The quantitative and qualitative odometry
evaluations on the KITTI dataset verify that the proposed TransFusionOdom can achieve superior performance compared
with other learning-based related works.

Index Terms— Attention mechanisms, LiDAR-inertial odometry (LIO), multimodal learning, sensor data fusion,
transformer.
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I. INTRODUCTION

SENSOR fusion is a popular topic in robotics for several
decades. In robotics, two types of sensors are commonly

used: exteroceptive sensors and proprioceptive sensors. Exte-
roceptive sensors, such as cameras, LiDAR, ultrasonic sensors,
and radar, provide rich and surrounding-sensitive informa-
tion, but with a low frequency of around 30 Hz. However,
proprioceptive sensors, including inertial measurement units
(IMUs), wheel odometers, and joint encoders, can estimate
their own state at a high frequency of around 200 Hz, but
they tend to drift over time. Hence, combining these two
types of sensors is implemented in a wide range of robotics
tasks.

In addition, sensor data fusion can be categorized into two
categories: homogeneous fusion and heterogeneous fusion.
Homogeneous fusion deals with modalities that have the same
shape and a certain correspondence between each element,
such as RGB with depth. However, heterogeneous fusion does
not have the same correspondence between modalities, such
as RGB and point cloud. Compared with the fusion between
homogeneous modalities, heterogeneous fusion presents more
challenges [11], [12] because homogeneous modalities are
naturally aligned featurewise.
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In the context of our task, odometry estimation involves the
computation of an object’s position and orientation by utilizing
sensor measurements. Within the sensors field, odometry esti-
mation plays a vital role in precise localization, mapping, and
tracking applications by utilizing different modalities of sensor
data. It contributes to advancements in robotics [1], [8], [10],
autonomous vehicles [13], [14], [15], and augmented reality
technologies [16], [17]. In particular, visual-inertial odometry
(VIO) [1], [6], [18] and LiDAR-inertial odometry (LIO) [5],
[19], [20] are commonly used combinations of sensor fusion
for odometry estimation in the localization systems for mobile
robots.

Sensor fusion technology has been dominated by filter-based
approaches such as Kalman filter (KF) and extended KF
(EKF) in the past several decades. However, the accuracy
of filter-based methods is limited by linearization errors [9].
Particularly in the field of LIO, fusion approaches can be
categorized into loosely coupled and tightly coupled methods
(see Section II-B), depending on how raw measurements are
integrated as constraints for optimization. Recently, numer-
ous studies have confirmed the superiority of data-driven
learning-based solutions over traditional solutions in odom-
etry estimation such as those proposed by Tu et al. [1],
Iwaszczuk et al. [5], Clark et al. [7], and Chen et al. [21].
Compared with the existing approaches, the majority of the
existing learning-based sensor fusion odometry methods are
based on convolutional neural network (CNN)-recurrent neural
network (RNN) frameworks, which can be inefficient due to
the inability to parallelize the RNN component during training
and inference [1], [22]. Furthermore, the 3-D raw point cloud
data from LiDAR sensors is noisier, sparser, and more irregular
compared to RGB images used in visual odometry (VO) tasks,
making it more challenging to directly apply convolutional
processing [15]. Meanwhile, Transformers [23] have been
used for fusing different sensor data in the field of VO,
showing good performance in accuracy and robustness [1],
[2], but Transformer architecture has not been explored in
LIO yet.

However, our motivation comes from the problem that
naively increasing the complexity of Transformer-based fusion
networks and handling multiple modalities together can
lead to the overfitting problem, especially considering that
LiDAR data have various formats such as vertex and normal
maps [14], [15] generated from raw 3-D point clouds. More-
over, although Transformer-based fusion has achieved good
performance, how the modalities are aggregated inside the
Transformer is rarely investigated and interpreted.

To tackle these challenges mentioned above, we propose
an end-to-end Transformer-based multimodal fusion network
for odometry estimation (namely TransFusionOdom). The
overview of the proposed TransFusionOdom is shown in
Fig. 1. The multiattention fusion approach, which combines
the soft mask attention fusion (SMAF) and Transformer,
is designed to fuse a mixture of homogeneous and hetero-
geneous sensor data, while avoiding the overfitting prob-
lem that occurs if the complexity of the Transformer-based
fusion network is overly increased [24]. To achieve homo-
geneous data fusion between LiDAR’s vertex and normal

Fig. 1. Simplified overview of proposed TransFusionOdom, inputs are
LiDAR raw point cloud and IMU measurements, outputs are six-DoF
pose including translation and orientation.

estimation, we implement the SMAF [3], [25], [26]. This
allows the adaptive weights assignment on aligned fea-
tures between homogeneous modalities using a smaller
number of network parameters than Transformers, avoiding
overfitting even when training the model with a limited
amount of data. For heterogeneous data fusion between
LiDAR and IMU, we introduce the Transformer [23]
encoder architecture. Through the visualization of atten-
tions, the incorporation between heterogeneous modalities is
illustrated.

Although learning-based frameworks offer several advan-
tages (see Section II-A), How should we perform fusion among
different modalities in a supervised sensor fusion odometry
estimation task? is still one of the key issues that remains,
which we introduce and comprehensively evaluate in this
study. Additionally, we extend a proposed fusion strategy to
different combinations of modalities to evaluate generalization
on our proposed synthetic dataset. From a global perspective,
the objective is to develop a fusion module in the field of
learning-based multimodal fusion, which serves as a general
component for tasks that utilize multiple modalities as input.

The main contributions of this article can be summarized
as follows.

1) To the best of our knowledge, TransFusionOdom is the
first end-to-end Transformer-based multimodal fusion
network for LIO estimation task, which achieves the
superior performance on KITTI dataset than previous
learning-based approaches. The multiattention fusion
module is proposed to achieve the adaptive weights
learning for the fusion between homogeneous (vertex
and normal map of LiDAR) and heterogeneous modali-
ties (integrated LiDAR and IMU measurement).

2) Exhaustive ablation studies are conducted to evaluate
different fusion strategies for a mix of homogeneous
and heterogeneous modalities fusion task. In addition,
a general visualization approach is introduced to demon-
strate the interactions between two modalities inside
the Transformer architecture, which could enhance the
interpretability of Transformer-based multimodal fusion
framework.

3) A synthetic multimodal dataset is publicly available,1

which is utilized to evaluate the generalization ability of

1https://github.com/RakugenSon/Multi-modal-dataset-for-odometry-
estimation
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TABLE I
RELATED WORKS ON SUPERVISED SENSOR FUSION FOR ODOMETRY ESTIMATION

the proposed fusion strategy with different combinations
of modalities. This dataset also facilitates easy testing
of other fusion algorithms and enables transfer learning
within the community.

II. RELATED WORK
In this section, we provide a brief introduction to

geometry-based and learning-based odometry estimation.
Since our work primarily focuses on sensor fusion, we discuss
traditional sensor fusion approaches in robotics, as well as
the categorization of existing learning-based supervised mul-
timodal fusion for odometry estimation, which is presented in
Table I.

A. Geometry-Based and Learning-Based
Odometry Estimation

Under ideal situations, traditional geometry-based or hand-
crafted systems are capable of achieving accurate and robust
localization results. Examples include VO systems like ORB-
SLAM2 [27], VIO systems like VINS-Mono [18], LiDAR
Odometry (LO) systems like LOAM [28], and LIO systems
like LIO-SAM [19]. However, in real-world scenarios, the
presence of sensor data noise, challenges in illumination,
texture-less environments, and dynamic objects are inevitable,
which can negatively impact the reliability of traditional
geometry-based approaches. With the rapid development of
data-driven learning-based approaches in various fields, the
advantages of learning-based localization systems can be sum-
marized based on the following three aspects [29].

1) Learning-based approaches can harness the power of
highly expressive deep neural networks as univer-
sal model, enabling them to automatically discover
task-relevant feature representations for challenging
situations.

2) Learning-based methods empower spatial and temporal
intelligence systems to acquire knowledge from past
experiences and actively utilize new information.

3) It has the capacity to effectively utilize the expanding
quantity of sensor data for a large dataset and computa-
tional power using parallel CUDA technology.

B. Traditional Sensor Fusion in Robotics
LO can be discussed from the perspective of point cloud reg-

istration algorithms, which usually involve some approaches of

scan-to-scan or scan-to-local-map registration, such as iterative
closest point (ICP) [30] and generalized-ICP (GICP) [31]. Our
study mainly focuses on the fusion strategy of LIO, which is
generally classified into loosely coupled and tightly coupled
methods in the traditional sensor fusion field.

1) Loosely-Coupled LIO: Loosely coupled LIO achieves
point cloud distortion correction by fusing IMU data. IMU
observations can also provide an initial pose estimation for
point cloud registration in IMU-aided LOAM [28] and LeGO-
LOAM [32], and even gravity direction observations. The final
result can be directly output as the point cloud registration
results or obtained by fusing the IMU integration results
(predictions) with point cloud registration results (observa-
tions) using filtering techniques, such as [33]. However,
in loosely coupled LIO, the fusion of LiDAR and IMU is
limited to the result level, without taking into account the
intrinsic constraints between these two types of observations.
Consequently, if one of the sensors experiences estimation
failure, it can lead to system deterioration and even divergence,
which ultimately affects the precision and robustness of the
system [34].

2) Tightly Coupled LIO: In the tightly coupled LIO, the
internal constraints between LiDAR and IMU observations are
fully considered, and they mutually influence each other to
determine the final estimations. Theoretically, tightly coupled
LIO can handle degradation scenarios that cannot be addressed
by the previous approaches, such as long tunnel environments
or highly dynamic motion conditions. The core of tightly
coupled LIO lies in the design of the state estimator, which
can be achieved through graph optimization (sliding/time
window optimization) techniques such as LIO-SAM [19] and
D-LIOM [35], or filtering methods like iterative EKF (IEKF),
for example, FAST-LIO [36] and FAST-LIO2 [37].

The advantage of sliding window optimization lies in its
ability to jointly estimate the state variables at multiple time
steps, resulting in higher accuracy. However, this approach
comes at the cost of low computational efficiency. In the
early stages, LIO based on sliding window optimization could
not guarantee real-time performance [38]. However, IEKF
offers high computational efficiency with good real-time per-
formance but it is limited by the number of observations and
the early marginalization of the initial state variables, resulting
in lower accuracy compared to sliding window optimization.
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Furthermore, there is an issue [34] with pose graph optimiza-
tion in LIO. When incorrect odometry estimation is added as
erroneous constraints in the pose graph, their negative effects
cannot be eliminated. In general, these two different tightly
coupled approaches represent a trade-off between accuracy and
efficiency.

Recently, tightly coupled LiDAR-inertial-VO (LIVO) has
been developed for accuracy and robust localization, such as
FAST-LIVO [39], R2LIVE [40] and CamVox [41]. The former
two systems contain the sub-LIO and sub-VIO, and CamVox is
to adapt livox LiDAR to the ORB-SLAM2 [27], VINS-Mono
[18], and LOAM [28].

Compared with learning-based approaches, traditional sen-
sor fusion approaches face difficulties in being as flexible as
learning-based approaches to assign adaptive weights to each
sensor in real-time using attention mechanisms [29], making
it challenging to represent the reliability of each sensor.

C. Learning-Based Multimodal Fusion for
Odometry Estimation

Because there is a limited number of works related to
learning-based LIO, and our main focus is on investigating dif-
ferent fusion strategies in learning-based approaches, Table I
presents some related works on supervised sensor fusion
odometry estimation. These works are not only limited to LIO
but also include VIO and other types of sensors. We have
categorized these related works based on their fusion strategies
and positions for further comprehensive comparisons.

1) How to Fuse Multiple Modalities: Under the category
of fusion strategies, there are concatenate-based approaches
such as VINet [7], Li et al.’s method [8], VIIONet [9], and
HVIOnet [10]. These methods directly concatenate the features
from different modalities, which means that the weight of each
sensor is constant and equal.

However, Chen et al.’s [3] proposed method, Son et al.’s [4]
developed method, DeepLIO [5], and ATVIO [6] use the soft
mask-based method, which relies on multilayer perceptron
(MLP) to learn the weights of each sensor. These methods
are similar to self-attention in PointLoc [25]. The learnable
mask could remove outliers by giving low weight, and the
adaptive reliability of each sensor during fusion improves
the accuracy and robustness of odometry estimation through
attentional mechanisms.

However, the ability of the simple MLP-based attentional
mask architecture is not sufficient to handle challenging
situations in the real world, such as reflection ground and
overcast days [1]. Inspired by ViLT [42], the Transformer [23]
architecture has shown impressive performance in the field of
multimodal fusion, not only limited to odometry estimation
tasks but also in navigation [43], semantic segmentation, and
object detection tasks [44]. In EMA-VIO [1] and AFT-VO
[2], the Transformer architecture is used to fuse multiple
modalities, and through challenging real-world experiments,
it has shown higher accuracy and robustness than some soft
mask-based approaches. But these works did not consider the
effect of fusion position, and the Transformer is used as a black
box without interpretability to explain how two modalities
interact and fusion inside the Transformer architecture.

2) Where to Conduct Fusion: Another important issue that
needs to be taken into consideration is the fusion position.
In Table I, early fusion means fusing source modalities and
then feeding them into the backbone for feature extraction.
Middle fusion means using different backbones and fusing
them before feeding into one regressor. If we feed into
different regressors and then fuse them, it is defined as late
fusion. Channel Exchange (CE) [11] and MLF-VO [45] have
confirmed that multilayer fusion is better than the previous
three fusion positions. However, since the Transformer is
a data-hungry model [46] compared to CNN-based models,
implementing the Transformer with multilayer fusion requires
taking the overfitting issue into consideration, which we dis-
cuss in the ablation study Section IV-C.

3) Strength of Transformer for Multimodal Fusion: Although
there are already many multimodal fusion tasks that deploy
Transformer architecture, the strengths of Transformer for
multimodal learning is still an open question [22]. Based on
literature and surveys, these main points are summarized.

1) Transformers possess an inherent global aggregation
nature, allowing them to perceive nonlocal patterns.

2) Leveraging their large model capacity, Transformer
models excel in handling challenging domain gaps
between different modalities more effectively.

3) Due to their parallel computation in both training and
inference, Transformers exhibit improved training and
inference efficiency compared to RNN-based models
(LSTM and GRU), making them well-suited for model-
ing time-series and sequence modalities [1].

4) Tokenization enables Transformers to flexibly organize
multimodal inputs, enhancing their flexibility in han-
dling different types of data.

5) Transformers possess the ability to encode implicit
knowledge inside of different modalities, and also
its multihead mechanism introduces multiple modeling
abilities that further improve the expressive capacity.

III. METHODOLOGY

In this section, we illustrate the proposed framework Trans-
FusionOdom in detail, the network architecture is shown in
Fig. 2. This framework includes Multimodal input (LiDAR
and IMU), Multiscale modality tokens, Multiattention fusion
(SMAF and Transformer-encoder), Multilayer fusion, and
Multitask regressor. The subscripts L and I of all the variables
represent LiDAR- and IMU-related information. The super-
scripts lt,t∈[1,4] represent the features at different layers.

A. LiDAR and IMU Data Preprocessing
The input modalities are LiDAR 3-D point cloud and IMU

signal. Since we use ResNet34 and ResNet18 [47] CNN-based
backbones to extract features, it is necessary to project a
3-D point cloud onto a 2-D plane R3

⇒ R2, and convert
the IMU signal R6 to image as well. At every timestamp t ,
the consecutive LiDAR point cloud P t and P t+1, along with
all IMU measurements taken between them I t

I are fed into
the TransFusionOdom as input.
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Fig. 2. Network architecture of the proposed TransFusionOdom. Given input data from LiDAR and IMU sensors, TransFusionOdom estimates the
six-DoF pose (translation and orientation) as an LIO system. Multimodal input : The LiDAR modality consists of vertex and normal maps, and
the IMU modality is converted to a signal feature map. Multiattention fusion: Fusion between homogeneous modalities within LiDAR is achieved
using the SMAF approach, while fusion between heterogeneous modalities (LiDAR and IMU) is based on the Transformer. Multilayer fusion and
Multiscale modality tokens: Fusion is performed at multiple stages with multiscale feature maps. Multitask regressor : Uncertainty is utilized as
learnable weights to balance the error between translation and rotation.

1) Vertex and Normal Map of LiDAR: Each LiDAR point
cloud pt = (pt

x , pt
y, pt

z) is projected to 2-D (u, v)

through a spherical projection method proposed in the stud-
ies of RangeNet [48], DeepLO [15], DeepLIO [5], and
UnDeepLIO [49]. The projection can be calculated as follows
to obtain the vertex maps V:

(
u
v

)
=


(

fu − arctan
(

py

px

)) /
ηu(

fv − arctan
( pz

d

)) /
ηv

 (1)

where d = (p2
x + p2

y + p2
z )

1/2 denotes depth, fu and fv
represent the horizontal and vertical angle in maximum. ηu
and ηv are the resolutions of pixel representation in horizontal
and vertical, respectively. This mapping somehow circumvents
the problem that point clouds are cluttered and disordered [49].

The normal vector is useful for point cloud registration [50].
Like related works [5], [15], [49], [51], we implement the
normal maps N, which have the correspondent relation with
the vertex map V in image coordinates (v p ⇒ np). Each
normal vector of point p is given as shown below

np =

∑
pi ∈P

wp0,p
(
v p0 − v p

)
× wp1,p

(
v p1 − v p

)
(2)

where d(·) is the range value and w1,2 = e−0.5|d(v1)−d(v2)| is a
predefined weight, p denotes the center point of the four-point
neighborhood P in up/right/down/left directions.

2) IMU Signal Image: The mainstream approach to pro-
cess IMU data is to use the RNN LSTM, which is good
at modeling sequential data, as proposed in Son et al. [4],

UnDeepLIO [49], DeepLIO [5], Li et al. [8], Chen et al. [3],
etc. However, LSTM has limitations in parallel computa-
tion [1] compared with CNN-based networks. Additionally,
Weytjens and De Weerdt [52] explained that CNN-based
methods are more robust than LSTM and require less time
to learn the model.

Inspired by some human action recognition tasks [53], [54],
we convert the IMU signal to images. This preprocessing
is also necessary since we implement a multilayer fusion
strategy, unlike CNN-based backbones, LSTM does not have
intermediate outputs and cannot be parallelized during training
and inference [1], [22]. Before feeding the data into the Trans-
FusionOdom framework, we conduct denoising of the IMU
signal because Brossard et al. [55] stated that denoising IMU
bias and noise could improve the accuracy of state estimation.
Similar to VIIONet [9], we apply the Savitzky-Golay filter [56]
to filter the IMU high-frequency noise.

We extract the linear acceleration and angular velocity in
x-, y-, and z-axis, as shown in Fig. 3. Because the frequency
of IMU is higher than LiDAR, we assume there are γ IMU
measurements between I t

L and I t+1
L . The raw IMU signal

image I t,t+1
I between timestamp [t, t + 1] is generated as

follows:

I t,t+1
I =


I0
I1
I2
. . .

Iγ

 =


a0

x , a0
y, a0

z , w
0
x , w

0
y, w

0
z

a1
x , a1

y, a1
z , w

1
x , w

1
y, w

1
z

a2
x , a2

y, a2
z , w

2
x , w

2
y, w

2
z

. . .

aγ
x , aγ

y , aγ
z , w

γ
x , w

γ
y , w

γ
z

 . (3)

To avoid excessive information compression, particularly
in the width dimension, when conducting multilayer fusion
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Fig. 3. Raw IMU signal plotted in linear acceleration and angular
velocity, IMU signal image resized with linear interpolation.

using intermediate outputs of the ResNet model with the
LiDAR modality, we normalize and resize the original IMU
signal image, which is ∈ Rp×6×3, to (HI , WI ). We conducted
the experiments to compare the performance using learnable
layer to enlarge the image and a fixed linear interpolation.
The results show that the latter solution is better, possibly
because the learnable layer has more uncertainty in extracting
representative features at the following steps.

B. Multiattention Fusion for a Mix of Homogeneous and
Heterogeneous Modalities

In this section, we introduce the multiattention fusion
module in detail, including SMAF and Transformer. The
motivation behind employing different approaches for a mix
of homogeneous and heterogeneous fusion is the quadratic
computational complexity of self-attention in the number of
tokens [57]. This can lead to an overfitting problem [58] with a
limited number of datasets, especially when using a multilayer
fusion strategy.

1) Soft-Mask Attentional Fusion for Homogeneous Modali-
ties: After the initial ResNet layer, two backbones share the
same weights to extract common features from the vertex and
normal maps (V p and N p). This weight sharing can help
compress the size of the model. Because V p and N p have
the same shape, a certain corresponding relationship exists
between each element during preprocessing. The fusion of V p
and N p is defined as a homogeneous multimodal fusion [11].

We conduct the SMAF during each layer of ResNet, which
is an MLP-based learnable mask. Similar attention mecha-
nisms are introduced in [6], [21], [25], and [59]. Here, v

l1
p

and nl1
p are the outputs of the first layer in ResNet34, MLP

is used to convert features generated by concatenation [v; n]

to mask vector Ml1
v and Ml1

n , Sigmoid is used to reweight
the mask to the range of [0, 1]. The whole processing is
automatically parameterized by a network as follows:

Ml1
v = Sigmoid

(
MLPv

[
vl1

p ; nl1
p

])
Ml1

n = Sigmoid
(

MLPn

[
vl1

p ; nl1
p

])
. (4)

Utilizing the mask vectors, the input homogeneous modal-
ities vertex and normal maps are reweighed by elementwise
multiplication ⊗. This SMAF τsoft(v, n) operation conducts at
layer t of ResNet, and is modeled as

τsoft

(
vlt

p, nlt
p

)
= vlt

p ⊗ Mlt
v + nlt

p ⊗ Mlt
n . (5)

2) Transformer-Based Fusion for Heterogeneous Modalities:
The output of SMAF τsoft(v

lt
p, nlt

p) needs to be fused with
the IMU modality i lt

p after each layer of ResNet, which is a
heterogeneous multimodal fusion task. In this article, we uti-
lize the Transformer to perform heterogeneous data fusion.
Unlike LSTM, Transformer can perform parallel computation
efficiently, which is the reason that we do not conduct RNN for
feature extraction and regression like EMA-VIO [1]. Although,
it is still necessary to manage the size of tokens for maintaining
the efficiency and size of the entire model.

Different from ViT [57] and ViLT [42], which use image
patches as token, we apply the average pooling operation
to downsample the image patch for reducing the computa-
tional burden and obtain a set ∈ RH×W×C , which includes
[x1

L , x2
L , x3

Li , . . . , xn−1
L ] and [xn

I , xn+1
I , xn+2

I , . . . , xm
I ]. In this

set, each element is treated as a token. We avoid the disorder
and clutter of point clouds by positional encoding xpos

L /xpos
I

∈ RH×W×C , in addition to projecting a raw point cloud to
image. We also apply the modal-type embedding l type/i type

∈

RW to give prior knowledge about which token belongs
to which modality. The modal-type embedding is generated
by a learnable linear layer. The ability of differentiation
between different sources could improve the performance of
the Transformer, which has been validated in AFT-VO [2]
and ViLT [42]. The set sequence, positional embedding, and
modal-type embedding of each modality integrate together by
elementwise summation as follows:

x̄L =

[
x1

L , x2
L , x3

Li , . . . , xn−1
L

]
+ xpos

L (6)

x̄ I =

[
xn

I , xn+1
I , xn+2

I , . . . , xm
I

]
+ xpos

I (7)

Gin
=

[
x̄L + l type

; x̄ I + i type] . (8)

The input to the Transformer-encoder is Gin
∈ RM×D f , each

token is a feature vector with a dimension of D f . The query
Q, key K , and value V are generated by linear transformation
with Mq

∈ RD f ×Dq , Mk
∈ RD f ×Dk , and Mv

∈ RD f ×Dv ,
respectively,

Q = Gin Mq , K = Gin Mk, V = Gin Mv. (9)

Then the attention mechanism shown in Fig. 4 inside the
Transformer-encoder is calculated by the following formulas:

αL ,I =
QKT
√

Dk
(10)

C L ,I = softmax(αL ,I )V (11)

Gout
= MLP(C L ,I ) + Gin (12)

where Gout is the same shape with Gin. There are several lay-
ers which are applied in the original Transformer-encoder, the
multihead attention generates parallel Q, K, V and involves
concatenating the attention value of C L ,I .

The output of the fusion, Gout, is up-sampled to recover
to the original resolution through bilinear interpolation, which
is the dimension of each layer’s output from ResNet. After
upsampling, elementwise summation is used to integrate the
output with existing feature maps as residual learning [47] to
prevent gradient degradation.
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Fig. 4. Transformer-based fusion between LiDAR and IMU tokens.

In contrast to TransFuser [60], which scales tokens at a
fixed shape of H0 = H1 = H2 = Hn and W0 = W1 =

W2 = Wn for each layer, we propose a multiscale Transformer
token fusion strategy where the dimensions of the tokens are
gradually scaled to correspond with the shape of each layer in
ResNet. Hence, this approach provides the different resolutions
of tokens for multilayer fusion. The benefits of multiscale
Transformer have been highlighted in many works [61], [62],
[63], [64], which leverage the coarse-to-fine concept of the
classic image pyramid architecture [65].

C. Interpretable Multimodal Fusion Inside of Transformer
In this section, we demonstrate the interpretation of

interactions between two modalities x̄L and x̄ I inside the
Transformer-encoder. Through the generation of the atten-
tion matrix αL ,I ∈ Rm×m

= [α1
L ; α2

L ; . . . ; αm
I ], it can be

split into four components which represent different self
and cross-attentions. If the query and key belong to the
same modality, such as (xn

L † xn′

L ) and (xn
I † xn′

I ), where †
denotes the process of using the query to search the key,
we define it as self-attention. Otherwise, (xn

L † xn′

I ) is defined
as cross-attention. Based on this definition, in Fig. 5(a), the
top-left of αL ,I represents LiDAR self-attention, the top-right
represents LiDAR-to-IMU cross-attention, the bottom-left rep-
resents IMU-to-LiDAR cross-attention, and the bottom-right
represents IMU self-attention.

Each column in αL ,I is the attention weights of one query
token in two modalities. We can reshape the weights to their
original resolution of corresponding modality. The relationship
between query token and attended token with highest score
could be observed as shown in Fig. 5(b). The detailed visual-
ization results are discussed in Section IV-B.

D. Multitask Regression
This section is the extension of our previous work

CertainOdom [14]. In the supervised 6-D pose regression field,
the objective is to predict the 6-D pose vector p including
translation and rotation x and q

p = [x, q]. (13)

The baseline method proposed in PoseNet [66] and
employed in DeepVO [67], ATVIO [6], VINet [7], and

Fig. 5. Interpretation of interactions between LiDAR and IMU inside
the Transformer. (a) Generation of attention matrix and the definition
of self/cross attention component. (b) Generation of attention map and
the relationship between query tokens and attended tokens with highest
score.

SelectFusion [21] is as follows:

loss =
∥∥x − x̂

∥∥
2 + β

∥∥∥∥ q
∥q∥

− q̂
∥∥∥∥

2
(14)

where L2 loss is used as the distance function to calculate the
error between prediction and ground truth [x̂, q̂], the manually
tuned hyperparameter β is used to weigh the error between
translation and rotation.

To overcome the problems that come from hyperparameters,
DeepLO [15], Lo-Net [51], and MS-Transformer [68] intro-
duce the following loss function:

loss = Lx exp(−sx ) + sx + Lqexp(−sq) + sq (15)

where Lx,q denotes the distance function, sx and sq are the
learned parameters to balance the error between translation
and rotation.

The main contribution of our previous work CertainOdom
[14] is to leverage the uncertainty which regressed from
multidecoders as multitask learning to weigh the error from
translation and rotation automatically. The supervised uncer-
tainty estimation proposed by Kendall and Gal [69] is as
follows:

loss =
1
N

N∑
i=1

1
2σ(xi )2 ∥yi − f (xi )∥

2
+

1
2

logσ(xi )
2 (16)

where σ is the predicted aleatoric uncertainty for the input
x ; yi and f (xi ) denote the ground truth and prediction with
regard to input xi , respectively.

Besides, similar to CertainOdom [14], DeepLIO [5],
VINet [7], EMA-VIO [1], and what Zou et al. proposed [70],
the frame-to-frame (f2f) constraint represents the relative
transformation between each frame in one sliding window
and frame-to-global (f2g) is an absolute pose denotes each
the transformation from each frame to initial frame.
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Regarding the selection of rotation representation, VINet [7]
and DeepLIO [5] incorporate the Lie algebra se(3) and Lie
group SE(3) into the f2f and f2g constraints, respectively,
which yield better performance than using a unique represen-
tation of rotation. The definitions are as follows:

se(3) =

{
ξ∧

=

[
ρ∧ 8

0 0

]
∈ R4×4

| ξ =

[
ρ

8

]
∈ R6

}
(17)

SE(3) =

{
T =

[
R t
0 1

]
∈ R4×4

| R ∈ SO(3), t ∈ R3
}

. (18)

However, it is difficult to directly regress the rotation matrix
R ∈ SO(3), R ∈ R3×3, since it needs to enforce their special
orthogonal properties [71]. There are three options for the
conversion of rotation matrix, as we listed in Table I, Euler
angle, quaternion and axis angle. Different from our previous
work, we conduct the exhaustive experiments to obtain the
best combination between different representations of rotation
and distance functions in Section IV-D.

The predictions for f2f and f2g are represented as y f
i =

(φ
f
i , ρ

f
i ), and yg

i = (tg
i , ϕ

g
i ), where ϕ

g
i denotes Euler

angles. The corresponding ground truths are represented
as ŷi f and ŷi g . Additionally, we formulate the proposed
loss L(θ , σx , σy, σz, σrx , σry , σrz ) as a function of our net-
work, where θ represents the weights of the network and
σ (x, y, z, rx , ry, rz) denotes the uncertainties in translation and
rotation. Combining the supervised baseline loss and uncer-
tainty estimation regression loss, the loss can be calculated as
follows:

Lx (θ , σx ) =

∑
i

1
2

exp
(
−si

x

)
×

([∥∥∥φ
f

i x − φ̂
f

i x

∥∥∥2
,
∥∥tg

ix − t̂g
ix

∥∥2
])

+
1
2

si
x (19)

Lr (θ , σrx ) =

∑
i

1
2

exp
(
−si

rx

)
×

([∥∥∥ρ
f

irx
− ρ̂

g
irx

∥∥∥2
,

∥∥∥ϕ
f

irx
− ϕ̂

g
irx

∥∥∥2
])

+
1
2

si
rx

(20)

where ρ
f
i ∈ R3

= (ρ
f

i x , ρ
f

iy, ρ
f

i z) represents the translation

in the x-, y-, and z-axis, and ϕ
f
i ∈ R3

= (ϕ
f

irx
, ϕ

f
iry

, ϕ
f

irz
)

represents the rotation in roll, pitch, and yaw. Following
the approach of [69], we use log variance si = logσ 2

i for
uncertainty implementation. By using learnable uncertainties,
the error between translation and orientation can be auto-
matically weighted, rather than using predefined weighting
hyperparameters, which is similar to how Kendall et al. [72]
use uncertainty to weigh semantic, instance segmentation, and
depth estimation tasks in a multitask learning framework.
Finally, the joint loss can be computed as follows:

L
(
θ , σ

x,y,z,rx ,ry ,rz
i

)
=

∑
i

(
Lx

(
θ , σ x

i
)
+ . . . + Lrz

(
θ , σ

rz
i

))
.

(21)

IV. EXPERIMENTS

The proposed TransFusionOdom is implemented with
Pytorch and 250 epochs are trained with NVIDIA Quadro

GV100 (32-GB VRAM). The window size of f2f and f2g
constraints is 8 and batch size is set to 16. Multilayer fusion
is conducted four times after the repeated conventional layers
of ResNet34 (3,4,6,3) and ResNet18 (2,2,2,2). The number of
multiheads is set to 4. Most of the empirical hyperparameters
are referenced from other related works, such as MLF-VO [45]
and Transfuser [60].

For the dataset, KITTI [13] is an autonomous driving dataset
commonly used as a benchmark for evaluating odometry tasks.
We use sequence 00–08 for training and 09 and 10 for
validation. As mentioned in [5], since IMU and LiDAR are not
synchronized, the number of IMU measurements between two
LiDAR frames varies, with 10–13 IMU measurements between
two consecutive LiDAR frames. We normalized the IMU mea-
surements and set γ = 10, as introduced in Section III-A.2.
The overfitting problem in trajectory estimation is evaluated
on KITTI dataset. All statistical metrics are calculated by the
publicly available KITTI evaluation tool.2 We also publish a
synthetic multimodal dataset for odometry estimation based
on the Gazebo simulation environment. This dataset can be
used to conveniently validate the generalization ability of the
proposed fusion strategy on the different combinations of
modalities.

A laptop PC is used to conduct inference experiments in
order to deploy on mobile platforms, whose configuration
is with Intel i9-12900H (up to 5.0-GHz Turbo) and RTX
3080Ti (16-GB VRAM). Since the computational cost is
a crucial factor that affects the application of autonomous
driving, and fusing different modalities inevitably increases the
model size, we analyze the parameter numbers and inference
time for different fusion strategies. In summary, the proposed
TransFusionOdom meets the real-time requirements on GPU.
Compared to implement the vanilla Transformer for fusing
all modalities together, our approach reduces the parameter
numbers by 55% and nearly doubles the frames per second
(frames/s) on GPU, reaching up to 32 frames/s. However,
optimizing our model for real-time capability on CPU-only
platforms remains a future work.

A. Positioning Results on KITTI Dataset
We show the positioning results evaluated qualitatively

in Fig. 6 and quantitatively in Table II, where the sensor-
fusion-related works is categorized into geometry-based and
learning-based considering different types of sensors. The
results show that our TransFusionOdom outperforms these
related works in most of cases, especially in translation as
shown in Fig. 6. Compared with the listed geometry-based
approaches in VIO, LO, and LIO, the advantage of our
proposed approach not only exists in the fusion stage but
also in the front-end feature representation modeling ability,
which we mentioned in Section II-A. Besides, the improve-
ment compared with EMA-VIO [1], which also employs
a Transformer-based approach for fusion similar to ours,
is possibly because the multilayer fusion module aggregates
the LiDAR and inertial data at different scales [11], [45]
and LiDAR provides more information than the camera

2https://github.com/LeoQLi/KITTI_odometry_evaluation_tool
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TABLE II
POSITIONING RESULTS ON KITTI DATASET

Fig. 6. Trajectory evaluation in KITTI 09 and 10 sequence with related
works.

thanks to the field-of-view. It is worth noting that the listed
learning-based approaches tend to achieve better performance
than geometry-based approaches in VO, LO, and LIO. Fur-
thermore, the learning-based approach of LO-Net [51] even
outperforms the geometry-based LIO approaches such as
LIO-SAM [19] and LIO-SCI [20]. This demonstrates that
the advantage of the learning-based approach with a single
sensor is greater than the traditional sensor-fusion approaches.
However, we observed that our advantage in rotation is inferior
to translation compared to the related works. We believe that
the possible reason is highly related to the representation of
rotation in learning-based approaches [75], which we discuss
in Section IV-D.

B. Visualization of Interactions Between
Multiple Modalities

1) Attention Inside of Homogeneous Fusion: According to
the introduction in Section III-B, we plot the soft mask
weights M l1

vertex and M l1
normal in Fig. 7(a). We observe that

during turning, the weights of the normal map increased a lot
compared to straight driving in l1∼4. The possible reason is
that the angle between the driving direction and normal vector
changes more during turning than during straight driving. Sim-
ilar conclusions were mentioned in UnDeepLIO [49], where
they only used vertex information to estimate the translation
because the change in translation does not affect the normal

Fig. 7. Visualization of attention between homogeneous modalities.
(a) SMAF between vertex spherical projection and normal map during
straight and turning, the car starts to turn around 70th and finish in the
end. (b) Normal estimation under different (left: forest, right: wall) road
situations.

information. However, we also find out that the normal map
is sensitive to road situations, as shown in Fig. 7(b). For
example, when the surroundings are in a forest, the normal
information is in a highly random condition compared to a wall
along the driving direction. Generally, the network gives more
attention to changing information instead of static features.

2) Attention Inside of Heterogeneous Fusion: Based on the
approach we introduced in Section III-C, we first visualize the
attention matrix of head 4 from Transformer 1 to 4 as shown
in Fig. 8. By observing the position of high-value attended
tokens, we can see that in T1, the self-attention domains are
more prominent compared to the later Transformer fusion
stages. From T2 to T4, the network gradually learns cross-
attention. In the final layer T4, the highest values of attended
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Fig. 8. Attention matrix of T1–T4 in head 4.

TABLE III
CROSS-ATTENTION QUANTITATIVE EVALUATION

tokens are distributed uniformly, indicating that there are inter-
actions based on attention weights between the two modalities
inside the fusion.

In addition to qualitative results, we conduct the statistical
analysis of cross-attention on KITTI dataset 09 sequence as
shown in Table III. We present the percentage of tokens (L t :
LiDAR tokens, It : inertial tokens) that have at least three of
the top five attended tokens belonging to the other modality
in each head of T1–T4. Consistent with the visualization of
the attention matrix, T1 shows rare cross-attention. Besides,
in each fusion stage, almost all the later heads exhibit more
cross-attention weights than their former heads. Also, the value
of T4 indicates that our proposed fusion strategy is capable of
aggregating information from two modalities.

Additionally, as illustrated in Fig. 5(b), we reshape the array
of attended token values and overlap them onto the source
modality image, as shown in Fig. 9. We present visualizations
of head 4 in T1 for self-attention and T4 which has the most
prominent cross-attention. In Fig. 9(a), we select the first patch
as the query token, and the highest value of the attended
token is located in the same position as the query token or
nearby positions. Moreover, the sum of attention values in the
query’s modality is around 0.75, indicating less attention in
the other modalities. Similar conditions exist in the LiDAR
self-attention of T1.

In Fig. 9(b), the query token is selected on the left side rep-
resenting linear acceleration. The high values of the attended
tokens are mainly located at the bottom of the road position.
In Fig. 9(c), the query token is located in a low-value position
of the IMU signal image, and the values of the attended tokens
are distributed almost equally. In comparison, in Fig. 9(d),
if the query token is selected in a high-value angular velocity
position, we observe that the high weights are located on the
main road and corners of the building. One possible reason
for this is that the geometry shape of the corner contributes
more when the car is turning with high angular velocity.
To verify this hypothesis, we visualize the LiDAR-to-Inertial
cross-attention in Fig. 9(e), by selecting the corner patch as the
query token, the high weights of attended tokens are mainly
located in the right parts with high angular velocity value
positions.

Fig. 9. Visualization of self-attention in T1 of head4 and cross-attention
in T4 of head 4, red rectangle is query token, the value of the
attended tokens is overlapped on source images. (a) Inertial-to-inertial
self-attention, query token: the first patch. (b) Inertial-to-LiDAR cross
attention, query token: high linear acceleration value. (c) Inertial-
to-LiDAR cross attention, query token: low angular velocity value.
(d) Inertial-to-LiDAR cross attention, query token: high angular velocity
value. (e) LiDAR-to-Inertial cross attention, query token: corner position.

Through the above visualization, it is shown that our
proposed fusion strategy could promote or restrain some
specific interactions between two modalities via assigning
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Fig. 10. Different simplified overviews of network architecture in ablation study, vertex vp and normal np are homogeneous modalities, which are
heterogeneous with ip from IMU, TF is short for Transformer.

TABLE IV
ABLATION STUDY RESULTS

adaptive weights, which makes the whole incorporation more
effective.

C. Ablation Study and Overfitting Problem
Since the proposed framework includes many modules,

an exhaustive ablation study is necessary. We design the
ablation study by separating the modules and evaluating their
impact on performance, as shown in Table IV and Fig. 10.
The multilayer strategy has been validated in MLF-VO [45]
and CE [11], and the multitask regressor module is compared
with the baseline 6-D pose regressor in our previous work,
CertainOdom [14]. Therefore, we keep these two modules as
“open” status in all cases.

The cases from (1) to (5) are designed to test three differ-
ent fusion approaches: concatenate, SMAF, and Transformer.
When selecting two fusion methods among these three as a
combination such as (4) and (5), they actually include two
opposite ways (e.g., concatenate between v p and np and then
SMAF with i p or inverse SMAF and concatenate). We only
show the better results in Table IV. Case (7) is to verify
the performance of the multiscale module compared to the
proposed TransFusionOdom (6).

The reason we not only list the testing results but also the
training dataset results is that we have observed an overfitting
problem in case (3). The issue of overfitting in learning-based
odometry estimation tasks has rarely been mentioned. As we
know, the Transformer-based models are more data-hungry
than CNN-based approaches [76]. Additionally, as mentioned
before, the model size or complexity of Transformer-based
models highly depends on the number and resolution of
tokens [57], and there is also a multilayer fusion strategy
inside the proposed framework, which increases the number
of parameters. The bigger the model, the easier it is to
overfit. Considering the above, it is necessary to check whether

the proposed solutions and other Transformer-based fusion
approaches are a good fit or overfitting model.

In case (3), regardless of whether we use a Transformer
to first fuse v p and np as one general LiDAR modality and
then deploy another Transformer to fuse it with i p as (3.2) of
Fig. 10, or directly implement one Transformer with v p, np
and i p three modalities as (3.1) of Fig. 10, the overfitting
problem occurs. As shown in Fig. 11, overfitting can be
detected by the loss curves, also the overfitting model performs
better than the good-fitted model in training, but in testing, the
result is worse than good-fitted model which is not what we
expect. To overcome the overfitting problem, we implement a
shared weights configuration between the backbones for vertex
and normal features in Fig. 2. This way, the network can
learn not only the common features but also its size can be
reduced to avoid overfitting. Additionally, we could deploy
data augmentation [77] to increase the size of the training
dataset, but it is outside the scope of this study.

From the statistical results in Table IV, it is clear how
the performance of each fusion strategy compares. If we
can overcome the overfitting problem with Transformer-based
fusion, its performance is much better than that of SMAF and
concatenation approaches. In case (7), we set a fixed resolution
of input tokens from l1 to l4, which is equal to the l4 resolution
in TransfusionOdom (6). The reason for this is that the coarse-
to-fine resolution is gradually reduced in multiscale fusion.
The higher the fixed resolution in (7), the more likely it is to
lead to overfitting. Therefore, multiscale strategy can also help
avoid overfitting problems in Transformer-based fusion.

D. Representations of Rotation and Distance Functions
To the best of our knowledge, there is no definitive con-

clusion in the odometry estimation task about which rotation
representation is the best, as shown in Table I. Unlike other
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Fig. 11. Left: overfitting model. Right: good-fitted model. (a) Loss
curves in training and validation. (b) Trajectory results of training data.
(c) Trajectory results of tested data.

6-D pose-related tasks, in odometry estimation, the network
predicts the ego-motion between two consecutive input frames,
which means the transformation is relatively small. The same
situation applies to the selection of the distance function.
Similar to DeepLO [15], which evaluates the rotation error
of each frame in testing, we consider these two variables and
conduct comprehensive experiments with our proposed loss
function to select the combination from Table V with the best
rotation estimation performance.

The approach for selecting the best option is to calculate
the rotation error under the same training and validation
conditions. The predicted rotation is calculated between each
consecutive frames after the model is finished training, and
compared with ground truth value for rotation error. Instead
of directly plotting the rotation error as done in DeepLO [15],
we use box plot for more detailed observations. Through the
box plot in Fig. 12, we can observe the mean rotation error,
stability, and outliers of different combinations. The best one
with our proposed loss is Euler angle with f2f constraint
and se(3) with f2g, combined with L2 distance function.
Based on all results, we find out that Euler angle is more

TABLE V
ALL COMBINATIONS OF REPRESENTATION OF ROTATION

WITH L1/2 DISTANCE

TABLE VI
GENERALIZATION EXPERIMENTS ON SYNTHETIC

MULTIMODAL DATASET

suitable for relative transformation and se(3) is good at global
transformation, L2 is better than L1 in most situations. How-
ever, it is difficult to draw a general conclusion on different
designed loss functions and data distributions. Compared with
the conclusion we obtain through extensive experiments, the
approach used to evaluate all combinations is more useful in
case we need to validate with other loss functions for different
tasks.

As we discovered in Section IV-A, the improvement in
rotation is lower compared to translation. One possible reason
is that for 3-D rotations, all representations exhibit disconti-
nuities in the real Euclidean spaces of four or fewer dimen-
sions [75]. Recently, ChiNet [78] and Zhou et al. [79] utilize
a 6-D attitude representation proposed by Zhou et al. [75] to
facilitate the learning of rotations in their approaches. This
representation enables a continuous mapping R6

∈ SO(3) for
object pose estimation tasks and could serve as a reference for
future work in learning-based odometry estimation field.

E. Gazebo-Based Synthetic Multimodal Dataset
We publish a synthetic multimodal dataset for odome-

try estimation that was collected in the Gazebo simulator,
as shown in Fig. 13. This dataset provides multisensor data,
including Velodyne VLP-16 3-D LiDAR, Realsense D435
RGB-D camera, IMU, and can also easily integrate other
sensors. The ground truth can directly be obtained from the
simulation state. The dataset includes five scenarios/maps,
each one is collects multimodal data five times (three for train-
ing, two for validation) using random trajectory generation.
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TABLE VII
NETWORK ARCHITECTURE OF IMPLEMENTATION

Fig. 12. Box plot about the top five combinations of representation of
rotation and distance function using rotation error.

In the future, the Gazebo world maps can be replaced and even
simulate moving objects. Using this dataset, the algorithms
developed in this community can be conveniently tested and
can also be used to apply the transfer learning [15] for training
initial weights.

We use this dataset to confirm the generalization ability
of the proposed fusion strategy to other combinations of
modalities. We separate the combinations into LiDAR-based
and RGB-based, which are commonly configured for robotics
perception and are listed in Table VI. We did not test the
combinations with four or three modalities that include LiDAR
because, as in TransFusionOdom, LiDAR includes vertex and
normal submodalities. Adding more modalities can lead to
overfitting problems. All modalities were converted to image
type as input.

In Fig. 14, we present a trajectory comparison between
unimodal and proposed TransFusionOdom. It turns out that
it is difficult to obtain acceptable results by only using inertial
data with Transformer architecture compared to using only
vision-based modalities such as RGB and LiDAR. Moreover,
unlike the common problem in geometry-based solutions,
which is the scale ambiguity [9], [10], thanks to the f2f and f2g
constraints, the scale problem is not so obvious in the learning-
based approach. This similar conclusion was also observed in
DeepLIO [5].

Fig. 13. Publicly available synthetic multimodal dataset for odometry
estimation.

Fig. 14. Comparison between unimodal and TransFusionOdom on
synthetic dataset.

In Table VI, there are different combinations of extero-
ceptive sensors (L-2, L-3, and R-2) and proprioceptive with
exteroceptive sensors (L-4, R-3, and R-4). The latter one has a
better performance than the former combination, which is the
same as our common sense. Besides, we observe that IMU
contributes more to attitude than position. In L-4 and R-3,
the performance has on average increased by 53% in position
and 65% in attitude, respectively. In R-4, RGB and depth are
homogeneous modalities fused by SMAF and then integrated
with IMU data using Transformer, which obtains the best
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performance in position. Generally, these experiments are not
designed to test which combination is the best, but to verify
that our fusion strategy can generalize to different modali-
ties to achieve better performance than unimodal instead of
only LiDAR with IMU in TransFusionOdom. Particularly in
RGB-based experiments, we observe that the performance
improves with the inclusion of more modalities using our
proposed fusion strategy.

V. CONCLUSION AND FUTURE WORK

In this study, we present TransFusionOdom, a Transformer-
based supervised end-to-end LIO framework, the network
architecture as shown in Table VII. We mainly discussed the
performance of different fusion strategies that involve the
homogeneous and heterogeneous modalities. We conducted
an exhaustive ablation study to check the performance of
different fusion strategies. Additionally, we illustrated and dis-
cussed the overfitting problem in odometry estimation caused
by a Transformer-based fusion network. We demonstrated a
general approach to visualize self- and cross attention inside
TransFusionOdom, which enables us to interpret how different
modalities interact with each other via attention mechanisms.
We also collected and made publicly available a synthetic
dataset to validate the generalization ability of the proposed
fusion strategy on different modalities. The odometry estima-
tion result is evaluated qualitatively and quantitatively on the
KITTI dataset which outperforms previous approaches.

Back to the previous question: How should we perform
fusion among different modalities in a supervised sensor
fusion odometry estimation task?. The task we tackle is a
mix of homogeneous and heterogeneous modalities fusion.
Homogeneous modalities have the characteristic of naturally
aligned features at each corresponding position, making the
lightweight MLP-based SMAF potentially capable of learn-
ing attentions between aligned features deterministically [21].
However, the structural discrepancies between heterogeneous
modalities make fusion more challenging. Thanks to the token-
to-token attention mechanism inside the Transformer archi-
tecture, it becomes possible to extract informative attentions
spatially from nonaligned features. Although larger datasets
and models have stronger learning abilities, using SMAF and
Transformer to fuse a mix of homogeneous and heterogeneous
modalities in this study is a trade-off between performance
and cost. Finally, combined with a multiscale and layer fusion
module, a generic and flexible fusion strategy is developed and
validated in the study.

Moreover, vision Transformer suffers from high redundancy
by only focusing on local features or self-attention domains
in shallow layers [80], as we discussed in the visualization
of the attention matrix in the early fusion stage. If we
can effectively achieve global context modeling at the early
stage of the Transformer-based architecture, we can make the
neural network model lightweight, which is beneficial for easy
training and real-world applications.
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