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 At present, the mainstream Simultaneous Localization and Mapping(SLAM) system is mainly suitable for 

static scenes. However, in real life, dynamic objects in an unknown environment limit the application of the SLAM 
system. Using the traditional SLAM scheme, if the moving object exists in the sensor field of view, the constructed 
3D point cloud map leaves the point cloud of the moving target multiple times, and affects the accuracy of the visual 
odometry(VO) and closure loop detection. This paper proposes a scheme for SLAM in dynamic environment that can 
be used to identify dynamic objects and remove its point clouds. The robustness of the system in dynamic 
environment is verified by the outliers of feature points matching and the point cloud map. 
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1. Introduction  
The process of acquiring external environmental information 

through sensors in an unknown environment, realizing pose 
estimation and incrementally constructing an environmental model, 
and then establishing its own global position is called SLAM. The 
most critical part of the entire SLAM system is the relative 
displacement of the two frames based on the position of the 
associated pixel between two adjacent frames. However, this 
calculation of the visual odometry is based on a strict condition: the 
position of the three-dimensional space point of the associated pixel 
used for the calculation is constant. If the pixels in the field of view 
are constantly moving such as the all pixels on the human body in 
Fig.1, and at the same time, these points participate in the pose 
calculation, then these points will continue to bring errors to the 
system, eventually leading to VO failure. 

 Fig. 1: ORB feature points matching in dynamic environment 

Raluca Scona and Mariano Jaimez proposed the StaticFusion[1] to 
deal with dynamic objects in SLAM system, the point clouds were 
divided into dynamic foregrounds and static background, only the 
static background cluster was sent to the back-end of SLAM. The 
dynamic object in the first frame image of the SF cannot be more than 
30% of the image to initialize the map. If it is bigger than it, it becomes 
difficult to recognize it in the first frame image. If the background 
object that has been considered to be static is subsequently moved, the 
algorithm is difficult to detect them. In contrast, the algorithm in this 
paper does not require the proportion of dynamic objects, and the 
dynamic objects in the first frame can be identified. 

With regard to the humanoid robot’s SLAM in dynamic 
environment, Tianwei Zhang and Emiko Uchiyama proposed the 
PoseFusion[2] SLAM to deal with the human moving in the static 
situation, which was based on the deep learning to detect the human 

joints pose and segment out its point clouds to build the map. The 
difference with deep learning method to do dynamic object 
segmentation is that the proposed method does not require the data 
training, and as long as the depth value of the moving object in the 
camera view of sight changes, not only the human in Fig.2 but also 
any kind of dynamic object such as Fig.3 waving tennis racket can be 
detected. 

 

 

 

Fig. 2: Continuous walking human segmentation 

 

 

 
Fig. 3: Point cloud of waving tennis racket segmentation(each 

picture represents: image after segmentation, original point cloud, 
point cloud after segmentation) 

 
2. Overview of the Proposed Method  

In this report, a detection method based on RGB image in Fig.4 
box.1 and depth image in Fig.4 box.5 is proposed. The RGB and depth 
images are acquired by Kinetic RGB-D camera. As you can see in the 
flow chart Fig.4, the homography matrix(box.3) between two 
continuous frames is solved by image matching(box.2), which 
represents mapping relationship between them. In the binarized 
differential image(box.4), which combines the depth 
information(box.5), we can separate the moving object into last and 
current frame(box.6), which means the image marked with the region 
in box.7 is obtained. 

For dealing with the point cloud, this report uses the marked 
image(box.7) to do the point cloud clustering segmentation. 
Combined with the camera model, the 3D point cloud(box.8) is 
calculated after the camera is calibrated, and filtered by 
StatisticalOutlierRemoval[3] and downsampled(box.9) to reduce the 
consumption of computing resources. The clustering 
algorithm(box.10) is used to segment the point cloud into multiple 



clusters. After each cluster projected to plane(box.11) , then compared 
with the moving target region(box.7) to find which the cluster is 
generated by dynamic object. In the process of removing the point 
cloud, the cluster point cloud is processed using the boundary 
extraction algorithm and the prism extraction algorithm(box.12). In 
the end, we could obtain the static object’s RGB image and point 
cloud(box.13). 

 
 
 
 
 

 

 
 
 
 

 
 
 

3. Dynamic Object Filter 
3.1 Dynamic pixels identification and separation 

Since the Kinect sensor collects information about the unknown 
environment during motion, we need to find the projection mapping 
relationship such as Eq. (1) between the image plane of the previous 
frame and the image plane of the current frame, that is, calculate the 
homography matrix in Fig.5. 

 

 

 

 

Fig. 5: Homography matrix 

After the two frames(the first line of Fig.6) are smoothed by 
grayscale and Gaussian filtering, the correspondence between the 
two frames is found by using the homography matrix. Then all the 
pixels are traversed in order to calculate the difference and compare 
with 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 in Eq. (2) (𝐼+ is the LastImage, 𝐼, is the 
CurrentImage) to obtain the the first image in Fig.7.  
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Fig. 6 Input images 

 
 

In the Fig. 7, the white area is the pixel of the moving object, and 
the black part represents the static area. However, this image 
contains the moving objects of the two frames. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In order to separate them into the second and third image in Fig.7, 
the proposed algorithm uses the change of the depth values of the 
corresponding coordinates to compare with the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 in Eq. 
(3) (𝑑+ represents the depth in LastImage). After the separation, 
traversing all white pixels’ coordinates to get the maximum and 
minimum range of x, y and depth such as the rectangle boundary in 
the third image of Fig.7. 
 
 
 
 

   
Fig. 7 Dynamic binary pixels separation 

The dynamic pixels detection and separate them into Last and 
Current Frame’ s algorithm is as bellowed: 

Algorithm about how to detect and separate the dynamic object  
Known: LastImage,CurrentImage,LastDepth,CurrentDepth, 
threshold1,threshold2 
1:for each row ∈ [0,LastImage.rows - 1] do 
2:   for each col ∈ [0,LastImage.cols - 1] do 
3:      xL ← row, yL ← col, z ← 1 
4:      x’ ← h11 * xL + h12 * yL + h13 
5:      y’ ← h21 * xL + h22 * yL + h23 
6:      z ← h31 * xL + h32 * yL + h33 
7:      diff ← abs(Pl(xL,yL) - Pc(xc,yc)) 
8:         for each row ∈ [0,diff.rows - 1] do 
9:            for each col ∈ [0,diff.cols - 1] do 
10:              if diff > threshold1 
11:                 x,y ∈ diff ← 255 
12:              else if  
13:                 x,y ∈ diff ← 0 
14:              end if 
15:              if dL - dc > T2 &&  (x,y ∈ diff ← 255) then 
16:                 LastFrame(x,y) ← 0 
17:                 CurrentFrame(x,y)  ← 255 
18:              else if dc - dL > threshold2 && (x,y ∈ diff ← 255)  
                    then 
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Fig. 4: Flow chart of the proposed method(red boxes 1,5 are the input, green boxes 
7,8,13 are the result images and point cloud, the rest blue boxes are image processing) 

 

/
𝑥,
𝑦,
1
2 = 4

ℎ55 ℎ56
ℎ65
ℎ75

ℎ66
ℎ76

					
ℎ57
ℎ67
ℎ77

9 /
𝑥+
𝑦+
1
2 (1) 

𝑓(𝑥, 𝑦) = |𝐼+(𝑥+, 𝑦+) − 𝐼,(𝑥,, 𝑦,)| 

𝑓(𝑥, 𝑦) = @
255, 		𝑓(𝑥, 𝑦) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1
0, 							𝑓(𝑥, 𝑦) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 

(2) 

𝑑𝑒𝑝𝑡ℎ(𝑥, 𝑦) = |𝑑+(𝑥+, 𝑦+) − 𝑑,(𝑥,, 𝑦,)| 

@								
(𝑥, 𝑦) ∈ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑟𝑎𝑚𝑒, 𝑑𝑒𝑝𝑡ℎ(𝑥, 𝑦) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2
		(𝑥, 𝑦) ∈ 𝐿𝑎𝑠𝑡𝐹𝑟𝑎𝑚𝑒, 	𝑑𝑒𝑝𝑡ℎ(𝑥, 𝑦) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2  (3) 

x_min 

y_max 

y_min 

x_max 



19:                 LastFrame(x,y) ← 255 
20:                 CurrentFrame(x,y)  ← 0 
21:              else if 
22:                 LastFrame(x,y) ← 0 
23:                 CurrentFrmae(x,y) ← 0 
24:              end if 
25:            end for 
26:         end for  
27:   end for 
28:end for 

 
3.2 Dynamic Object Point Cloud Clusters Selection 

Using VoxelGrid[4], under the premise of ensuring the shape of 
the point cloud, the number will be downsampled to ensure the 
efficiency of the algorithm. Before cloud clustering[5], since both 
moving objects and static objects are above the ground plane, 
depending on the scene, it is sometimes necessary to remove the 
ground planar[6] in order to achieve a better clustering effect. Such 
as in Fig. 8, the downsampled points cloud contains 1 dynamic 
cluster(human) and 2 static cluster(walls). After clustered, the 
boundary of each cluster is obtained by the projection formula of the 
camera pinhole model, and compared with the range of the dynamic 
object pixel points in the previous step, finally which cluster belongs 
to dynamic objects can be decided.  

                 

Fig. 8 Downsampled point clouds including 3 clusters 
The dynamic cluster judgement algorithm is as bellowed: 

Algorithm about which cluster is belong to the dynamic object 
Known: count is the number of cluster, fx, fy, cx, cy are the camera model, 
threshold3 
1:for each i ∈ [0, count - 1] do 
2:   for each j ∈ [0,cluster.size-1] do 
3:      u0 ← (x’ * fx)/z’ + cx 
4:      v0 ← (y’ * fy)/z’ + cy 
5:      Boundary ← (u_min,u_max,v_min,v_max, 

depth_min,depth_max) 
6:   end for 
7:end for 
8:point_num ← 0 
9:for each row ∈ [0,CurrentImage.rows - 1] do 
10:   for each col ∈ [0,CurrentImage.cols - 1] do 
11:      if CurrentImage(row,col) == 255 then 
12:         if row > u_min a && row < u_max && col > v_min && 

col <v_max then 
13:            if cluster(row,col)depth_min && cluster(row,col) <  

depth_max then 
14:               num = num + 1 
15:            end if 
16:         end if 
17:      end if 
18:   end for 
19:end for 
20:if num > threshold3 then 
21:return true 
22:end if 

3.3 Dynamic Object Point Cloud Clusters Segmentation 
Once we have determined the dynamic cluster such as Fig.11, we 

need to remove it in the original point cloud instead of the 

downsampled one. First, we perform a concave hull algorithm[8] on 
the projection of downsampled dynamic object cluster, in order to 
obtain its boundary, such as the continuous blue points in Fig. 9. By 
stretching the concave hull in the original point cloud, the dynamic 
object point cloud in the original point cloud is included in the concave 
polygonal prism[8]. For example, stretching the concave hull to form 
a polygonal prism, the red lines in Fig. 9 represents the stretch 
direction, as we can see, the original human point cloud is inside the 
prism. After removing them, the remaining point cloud is static scenes 
like Fig.10. In the end, projecting it to the 2D plane, and set the 
removed pixel value to 0. 

 

Fig. 9 Original point cloud inside the polygonal prism 

          
    Fig. 10 Static scene point cloud and RGB image 

 
4. Experiment Results 

The dynamic filter that we propose is used to send filtered 
information to RTAB[9] SLAM's mapping node. At the same 
time, the matching of the feature points between original–original, 
filtered-filtered have been test in Fig. 14, 15. However, in the both 
filtered situation, the white pixels around the boundary of 
dynamic object were very similar when detect ORB feature which 
produces large outliers in matching Fig. 15. 

In order to solve this problem, we use the dynamic object 
position information to make a bool type matrix mask. The details 
are in the Fig. 11. First step is traversing all the pixels in order to 
segment white pixels and non-white pixels, then extract contours. 
Using the convex hull to make the mask, in this mask matrix, the 
black represents 0 and the others represents 1, the region of 1 will 
be considered as the ROI(region of interest) in Fig. 12. So the 
mask has been added to the filtered image, the ORB feature points 
has been detected only in the ROI. The left image in Fig.13 is 
without the ROI mask, the right is after the mask.  
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Fig. 11 Dynamic Object Region Mask 

Fig. 12 Bool Type Matrix 
 



 

 

 

 

  

 

As we can see, the filtered image with mask has the better 
performance in reducing the outliers in Fig. 14-16. Besides, the Fig. 
17,18 represent the last frame with dynamic scene, but the dynamic 
object disappeared in the current frame. With the mask, the outliers 
are less in the comparison. All the matchings are under the same 
Hamming distance constrain condition. 

The following figures are the point cloud map and Octomap 
comparison in Fig. 19,20. Inside the red line, there are the dynamic 
object parts. Both of right figures are after the dynamic filter effect. 

 
 
 
 
 
 

 

   

Fig. 20 Octomap comparison 
Table 1: Thresholds list and time consuming. 

Name Threshold Name Time 
Image differential 

binarization T1=40 
Calculate 

homography 
matrix 

0.067182s 

Depth threshold T2=0.2m 
Use depth 

information to 
construct point 

cloud 
0.029468s 

Point cloud 
statistical outliers 

removal filter 
T3=0.06m 

Image differential 
binarization to 

find out dynamic 
pixels 

0.714532s 

Point cloud 
clustering 

distance threshold 
T4=0.1m Downsampling 

point cloud 0.026421s 

Downsampled 
voxel grid 
resolution 

T5=0.02m The removal of 
ground plane 0.05677s 

Pointing cluster 
boundary 

extraction angle 
T6=8 degree 

The removal of 
dynamic object 

point cloud cluster 
0.454950s 

3D moving target 
detection point 

number threshold 
T7=3000 Total time 1.34933s 

The RTAB system adds the key-frame each second, so in general, add the 
2 keyframes need 2 seconds, and calculate the 2 frames need 1.3 seconds) 
The running virtual machine information: ROM:32GB CPU: Intel® 
Core™ i7-4930K CPU @ 3.40GHz × 12 

 

5. Conclusions 
The dynamic object detection and point cloud removal 

algorithms proposed in this paper have better effects when the 
depth is constantly changing. Table 1 is the time consuming of 
each part. But it is sensitive to a large number of manually set 
thresholds in Table 1. In addition, the point cloud map 
reconstruction which is blocked by dynamic objects is sparse in 
Fig. 18. In the future, the quantified VO results are necessary for 
explaining the dynamic filter performance in SLAM. 
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Fig. 13 Detect ORB with ROI and without ROI 

Fig. 14 Matching in original image 

Fig. 15 Matching without ROI mask 

Fig. 16 Matching with ROI mask 

Fig. 17 Matching with static scene(without mask) 

Fig. 19 Point cloud map comparison 

 

  

Fig. 18 Matching with static scene(with mask) 


