
Robust SLAM based on Segmentation of Dynamic Object’s Point
Cloud

○ Sun Leyuan, Student Non-member, University of Tsukuba, AIST, leyuansun@outlook.com
Fumio Kanehiro, The Robotics Society of Japan, AIST

 At present, the mainstream Simultaneous Localization and Mapping(SLAM) system is mainly suitable for

static scenes. However, in real life, dynamic objects in an unknown environment limit the application of the SLAM
system. Using the traditional SLAM scheme, if the moving object exists in the sensor field of view, the constructed
3D point cloud map leaves the point cloud of the moving target multiple times, and affects the accuracy of the visual
odometry(VO) and closure loop detection. This paper proposes a scheme for SLAM in dynamic environment that can
be used to identify dynamic objects and remove its point clouds. The robustness of the system in dynamic
environment is verified by the outliers of feature points matching and the point cloud map.

Key Words: Dynamic Object Detection, Point Cloud Segmentation, Feature Points Matching, Robust SLAM

1. Introduction
The process of acquiring external environmental information

through sensors in an unknown environment, realizing pose
estimation and incrementally constructing an environmental model,
and then establishing its own global position is called SLAM. The
most critical part of the entire SLAM system is the relative
displacement of the two frames based on the position of the
associated pixel between two adjacent frames. However, this
calculation of the visual odometry is based on a strict condition: the
position of the three-dimensional space point of the associated pixel
used for the calculation is constant. If the pixels in the field of view
are constantly moving such as the all pixels on the human body in
Fig.1, and at the same time, these points participate in the pose
calculation, then these points will continue to bring errors to the
system, eventually leading to VO failure.

 Fig. 1: ORB feature points matching in dynamic environment

Raluca Scona and Mariano Jaimez proposed the StaticFusion[1] to
deal with dynamic objects in SLAM system, the point clouds were
divided into dynamic foregrounds and static background, only the
static background cluster was sent to the back-end of SLAM. The
dynamic object in the first frame image of the SF cannot be more than
30% of the image to initialize the map. If it is bigger than it, it becomes
difficult to recognize it in the first frame image. If the background
object that has been considered to be static is subsequently moved, the
algorithm is difficult to detect them. In contrast, the algorithm in this
paper does not require the proportion of dynamic objects, and the
dynamic objects in the first frame can be identified.

With regard to the humanoid robot’s SLAM in dynamic
environment, Tianwei Zhang and Emiko Uchiyama proposed the
PoseFusion[2] SLAM to deal with the human moving in the static
situation, which was based on the deep learning to detect the human

joints pose and segment out its point clouds to build the map. The
difference with deep learning method to do dynamic object
segmentation is that the proposed method does not require the data
training, and as long as the depth value of the moving object in the
camera view of sight changes, not only the human in Fig.2 but also
any kind of dynamic object such as Fig.3 waving tennis racket can be
detected.

Fig. 2: Continuous walking human segmentation

Fig. 3: Point cloud of waving tennis racket segmentation(each

picture represents: image after segmentation, original point cloud,
point cloud after segmentation)

2. Overview of the Proposed Method

In this report, a detection method based on RGB image in Fig.4
box.1 and depth image in Fig.4 box.5 is proposed. The RGB and depth
images are acquired by Kinetic RGB-D camera. As you can see in the
flow chart Fig.4, the homography matrix(box.3) between two
continuous frames is solved by image matching(box.2), which
represents mapping relationship between them. In the binarized
differential image(box.4), which combines the depth
information(box.5), we can separate the moving object into last and
current frame(box.6), which means the image marked with the region
in box.7 is obtained.

For dealing with the point cloud, this report uses the marked
image(box.7) to do the point cloud clustering segmentation.
Combined with the camera model, the 3D point cloud(box.8) is
calculated after the camera is calibrated, and filtered by
StatisticalOutlierRemoval[3] and downsampled(box.9) to reduce the
consumption of computing resources. The clustering
algorithm(box.10) is used to segment the point cloud into multiple

clusters. After each cluster projected to plane(box.11) , then compared
with the moving target region(box.7) to find which the cluster is
generated by dynamic object. In the process of removing the point
cloud, the cluster point cloud is processed using the boundary
extraction algorithm and the prism extraction algorithm(box.12). In
the end, we could obtain the static object’s RGB image and point
cloud(box.13).

3. Dynamic Object Filter
3.1 Dynamic pixels identification and separation

Since the Kinect sensor collects information about the unknown
environment during motion, we need to find the projection mapping
relationship such as Eq. (1) between the image plane of the previous
frame and the image plane of the current frame, that is, calculate the
homography matrix in Fig.5.

Fig. 5: Homography matrix

After the two frames(the first line of Fig.6) are smoothed by
grayscale and Gaussian filtering, the correspondence between the
two frames is found by using the homography matrix. Then all the
pixels are traversed in order to calculate the difference and compare
with 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 in Eq. (2) (𝐼+ is the LastImage, 𝐼, is the
CurrentImage) to obtain the the first image in Fig.7.

LastFrame CurrentFrame

LastDepth CurrentDepth
Fig. 6 Input images

In the Fig. 7, the white area is the pixel of the moving object, and
the black part represents the static area. However, this image
contains the moving objects of the two frames.

In order to separate them into the second and third image in Fig.7,
the proposed algorithm uses the change of the depth values of the
corresponding coordinates to compare with the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 in Eq.
(3) (𝑑+ represents the depth in LastImage). After the separation,
traversing all white pixels’ coordinates to get the maximum and
minimum range of x, y and depth such as the rectangle boundary in
the third image of Fig.7.

Fig. 7 Dynamic binary pixels separation

The dynamic pixels detection and separate them into Last and
Current Frame’ s algorithm is as bellowed:

Algorithm about how to detect and separate the dynamic object
Known: LastImage,CurrentImage,LastDepth,CurrentDepth,
threshold1,threshold2
1:for each row ∈ [0,LastImage.rows - 1] do
2: for each col ∈ [0,LastImage.cols - 1] do
3: xL ← row, yL ← col, z ← 1
4: x’ ← h11 * xL + h12 * yL + h13
5: y’ ← h21 * xL + h22 * yL + h23
6: z ← h31 * xL + h32 * yL + h33
7: diff ← abs(Pl(xL,yL) - Pc(xc,yc))
8: for each row ∈ [0,diff.rows - 1] do
9: for each col ∈ [0,diff.cols - 1] do
10: if diff > threshold1
11: x,y ∈ diff ← 255
12: else if
13: x,y ∈ diff ← 0
14: end if
15: if dL - dc > T2 && (x,y ∈ diff ← 255) then
16: LastFrame(x,y) ← 0
17: CurrentFrame(x,y) ← 255
18: else if dc - dL > threshold2 && (x,y ∈ diff ← 255)
 then

3. Calculate
Homography

4. Image
Difference

2. Images
Matching

6. Separate to
Current & Last

Frame

10.
Euclidean

Cluster
Extraction

9.
VoxelGrid
DownSam

pling

11.
Cluster

Projection

12.
ConcaveHull+

ExtractPolygonal
PrismData

Fig. 4: Flow chart of the proposed method(red boxes 1,5 are the input, green boxes
7,8,13 are the result images and point cloud, the rest blue boxes are image processing)

/
𝑥,
𝑦,
1
2 = 4

ℎ55 ℎ56
ℎ65
ℎ75

ℎ66
ℎ76

					
ℎ57
ℎ67
ℎ77

9 /
𝑥+
𝑦+
1
2 (1)

𝑓(𝑥, 𝑦) = |𝐼+(𝑥+, 𝑦+) − 𝐼,(𝑥,, 𝑦,)|

𝑓(𝑥, 𝑦) = @
255, 		𝑓(𝑥, 𝑦) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1
0, 							𝑓(𝑥, 𝑦) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1

(2)

𝑑𝑒𝑝𝑡ℎ(𝑥, 𝑦) = |𝑑+(𝑥+, 𝑦+) − 𝑑,(𝑥,, 𝑦,)|

@								
(𝑥, 𝑦) ∈ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑟𝑎𝑚𝑒, 𝑑𝑒𝑝𝑡ℎ(𝑥, 𝑦) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2
		(𝑥, 𝑦) ∈ 𝐿𝑎𝑠𝑡𝐹𝑟𝑎𝑚𝑒, 	𝑑𝑒𝑝𝑡ℎ(𝑥, 𝑦) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 (3)

x_min

y_max

y_min

x_max

19: LastFrame(x,y) ← 255
20: CurrentFrame(x,y) ← 0
21: else if
22: LastFrame(x,y) ← 0
23: CurrentFrmae(x,y) ← 0
24: end if
25: end for
26: end for
27: end for
28:end for

3.2 Dynamic Object Point Cloud Clusters Selection

Using VoxelGrid[4], under the premise of ensuring the shape of
the point cloud, the number will be downsampled to ensure the
efficiency of the algorithm. Before cloud clustering[5], since both
moving objects and static objects are above the ground plane,
depending on the scene, it is sometimes necessary to remove the
ground planar[6] in order to achieve a better clustering effect. Such
as in Fig. 8, the downsampled points cloud contains 1 dynamic
cluster(human) and 2 static cluster(walls). After clustered, the
boundary of each cluster is obtained by the projection formula of the
camera pinhole model, and compared with the range of the dynamic
object pixel points in the previous step, finally which cluster belongs
to dynamic objects can be decided.

Fig. 8 Downsampled point clouds including 3 clusters
The dynamic cluster judgement algorithm is as bellowed:

Algorithm about which cluster is belong to the dynamic object
Known: count is the number of cluster, fx, fy, cx, cy are the camera model,
threshold3
1:for each i ∈ [0, count - 1] do
2: for each j ∈ [0,cluster.size-1] do
3: u0 ← (x’ * fx)/z’ + cx
4: v0 ← (y’ * fy)/z’ + cy
5: Boundary ← (u_min,u_max,v_min,v_max,

depth_min,depth_max)
6: end for
7:end for
8:point_num ← 0
9:for each row ∈ [0,CurrentImage.rows - 1] do
10: for each col ∈ [0,CurrentImage.cols - 1] do
11: if CurrentImage(row,col) == 255 then
12: if row > u_min a && row < u_max && col > v_min &&

col <v_max then
13: if cluster(row,col)depth_min && cluster(row,col) <

depth_max then
14: num = num + 1
15: end if
16: end if
17: end if
18: end for
19:end for
20:if num > threshold3 then
21:return true
22:end if

3.3 Dynamic Object Point Cloud Clusters Segmentation
Once we have determined the dynamic cluster such as Fig.11, we

need to remove it in the original point cloud instead of the

downsampled one. First, we perform a concave hull algorithm[8] on
the projection of downsampled dynamic object cluster, in order to
obtain its boundary, such as the continuous blue points in Fig. 9. By
stretching the concave hull in the original point cloud, the dynamic
object point cloud in the original point cloud is included in the concave
polygonal prism[8]. For example, stretching the concave hull to form
a polygonal prism, the red lines in Fig. 9 represents the stretch
direction, as we can see, the original human point cloud is inside the
prism. After removing them, the remaining point cloud is static scenes
like Fig.10. In the end, projecting it to the 2D plane, and set the
removed pixel value to 0.

Fig. 9 Original point cloud inside the polygonal prism

 Fig. 10 Static scene point cloud and RGB image

4. Experiment Results

The dynamic filter that we propose is used to send filtered
information to RTAB[9] SLAM's mapping node. At the same
time, the matching of the feature points between original–original,
filtered-filtered have been test in Fig. 14, 15. However, in the both
filtered situation, the white pixels around the boundary of
dynamic object were very similar when detect ORB feature which
produces large outliers in matching Fig. 15.

In order to solve this problem, we use the dynamic object
position information to make a bool type matrix mask. The details
are in the Fig. 11. First step is traversing all the pixels in order to
segment white pixels and non-white pixels, then extract contours.
Using the convex hull to make the mask, in this mask matrix, the
black represents 0 and the others represents 1, the region of 1 will
be considered as the ROI(region of interest) in Fig. 12. So the
mask has been added to the filtered image, the ORB feature points
has been detected only in the ROI. The left image in Fig.13 is
without the ROI mask, the right is after the mask.

1 1 1 1

1 0 1 1

1 0 1 1

= + + =

Fig. 11 Dynamic Object Region Mask

Fig. 12 Bool Type Matrix

As we can see, the filtered image with mask has the better
performance in reducing the outliers in Fig. 14-16. Besides, the Fig.
17,18 represent the last frame with dynamic scene, but the dynamic
object disappeared in the current frame. With the mask, the outliers
are less in the comparison. All the matchings are under the same
Hamming distance constrain condition.

The following figures are the point cloud map and Octomap
comparison in Fig. 19,20. Inside the red line, there are the dynamic
object parts. Both of right figures are after the dynamic filter effect.

Fig. 20 Octomap comparison
Table 1: Thresholds list and time consuming.

Name Threshold Name Time
Image differential

binarization T1=40
Calculate

homography
matrix

0.067182s

Depth threshold T2=0.2m
Use depth

information to
construct point

cloud
0.029468s

Point cloud
statistical outliers

removal filter
T3=0.06m

Image differential
binarization to

find out dynamic
pixels

0.714532s

Point cloud
clustering

distance threshold
T4=0.1m Downsampling

point cloud 0.026421s

Downsampled
voxel grid
resolution

T5=0.02m The removal of
ground plane 0.05677s

Pointing cluster
boundary

extraction angle
T6=8 degree

The removal of
dynamic object

point cloud cluster
0.454950s

3D moving target
detection point

number threshold
T7=3000 Total time 1.34933s

The RTAB system adds the key-frame each second, so in general, add the
2 keyframes need 2 seconds, and calculate the 2 frames need 1.3 seconds)
The running virtual machine information: ROM:32GB CPU: Intel®
Core™ i7-4930K CPU @ 3.40GHz × 12

5. Conclusions
The dynamic object detection and point cloud removal

algorithms proposed in this paper have better effects when the
depth is constantly changing. Table 1 is the time consuming of
each part. But it is sensitive to a large number of manually set
thresholds in Table 1. In addition, the point cloud map
reconstruction which is blocked by dynamic objects is sparse in
Fig. 18. In the future, the quantified VO results are necessary for
explaining the dynamic filter performance in SLAM.

REFERENCES

[1] R. Scona, M. Jaimez, Y. R. Petillot, M. Fallon, and D. Cremers, “Stat-

icfusion: Background reconstruction for dense rgb-d slam in dynamic
environments.” Institute of Electrical and Electronics Engineers, 2018.

[2] T. Zhang and Y. Nakamura, “Posefusion: RGB-D SLAM in dynamic
human environment,” 2018, international Symposium on
Experimental Robotics.

[3] http://pointclouds.org/documentation/tutorials/statistical_outlier.php#
statistical-outlier-removal

[4] http://wiki.ros.org/pcl_ros/Tutorials/VoxelGrid%20filtering
[5] http://pointclouds.org/documentation/tutorials/cluster_extraction.php

#cluster-extraction
[6] http://wiki.ros.org/pcl_ros/Tutorials/SACSegmentationFromNormals

%20planar%20segmentation
[7] http://pointclouds.org/documentation/tutorials/hull_2d.php#hull-2d
[8] http://wiki.ros.org/pcl_ros/Tutorials/ExtractPolygonalPrismData%20s

egmentation
[9] Mathieu Labbé ,François Michaud, “Appearance-Based Loop Closure

Detection for Online Large-Scale and Long-Term Operation”, IEEE
Transactions on Robotics, June 2013.

Fig. 13 Detect ORB with ROI and without ROI

Fig. 14 Matching in original image

Fig. 15 Matching without ROI mask

Fig. 16 Matching with ROI mask

Fig. 17 Matching with static scene(without mask)

Fig. 19 Point cloud map comparison

Fig. 18 Matching with static scene(with mask)

