
  

Abstract— Nowadays, SLAM in the dynamic environment has 
become a popular topic. This problem is called dynamic SLAM 
where many solutions have been proposed to segment out the 
dynamic objects that bring errors to camera tracking and 
subsequent 3D reconstruction. However, state-of-the-art 
dynamic SLAM methods face the problems of accuracy and 
speed, which is due to the fact that one segmentation algorithm 
cannot guarantee both points at the same time. In this paper, we 
propose a multi-purpose dynamic SLAM framework to provide 
a variety of selections for segmentation, each has its applicable 
scene. The experimental results show that the framework is 
compatible with different segmentation methods, which 
improves corresponding existing methods in some aspects. 

I. INTRODUCTION 

Two major issues need to be solved when we use 
Simultaneous Localization and Mapping (SLAM) technology 
in a dynamic environment. One is the inaccuracy in camera 
pose tracking because this calculation is based on a strict 
condition: the position of the point between corresponding 
pixels used for the calculation is constant in the global space, 
i.e., the objects must be static and rigid. If the pixels in the 
field of view are constantly moving, e.g., the regions 
belonging to the human body in Fig. 1, and these points 
participate in the pose calculation, they will continue to bring 
errors to the system, eventually leading to loss of camera track. 
The other issue is the point cloud corresponding to dynamic 
objects remains in the final dense point cloud map, which may 
not be suitable for the subsequent use (the right of Fig. 12).  

Although there are several SLAM methods for a dynamic 
environment, state-of-the-art dynamic SLAM methods face 
the problems of accuracy and speed, which is because a single 
segmentation algorithm cannot handle all the types of dynamic 
objects and guarantee accuracy and speed at the same time. 
There are basically two kinds of dynamic objects, moving and 
movable. Moving objects are objects which are actually 
moving in the scene, whereas movable objects are not 
necessarily moving in the scene. In order to detect movable 
objects, we need to give prior knowledge about moving 
objects based on our life experience. Hence a single 
segmentation method is difficult to handle different purposes 
of users. 

In this paper, we propose a multi-purpose dynamic SLAM 
framework that is configurable depending on the user’s 
purpose and it is also useful to compare different segmentation 
methods on a single platform. Considering the above 
difficulties, we sort out the 3 purposes of SLAM in the  
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Figure 1.  Example of incorrect keypoint matching result in a dynamic 
environment 

dynamic environment. The first one is to obtain an accurate 
visual localization result. For example, we need this kind of 
SLAM to evaluate the trajectory of the mobile robot in the 
warehouse. For this purpose, we should choose the 
segmentation method for moving objects. The second is to get 
the dense point cloud map of static objects which can be used 
for the robot navigation. For this purpose, we should select 
the segmentation method for movable objects. The last one is 
for users who would like to do online processing, so the 
segmentation must be done in real-time. In the proposed 
framework, the segmentation methods can be replaced easily. 
Besides, in addition to the sparse keypoint map, it can 
generate a dense point cloud map of static objects if depth 
information is available. 

This paper is structured as follows. Section II discusses 
the related work and corresponding category. Section III is 
about the proposed multi-purpose SLAM framework, Section 
IV demonstrates some segmentation methods. Section V 
shows experimental results to compare the presented 
segmentation methods with their corresponding existing 
methods. Conclusions and future works are discussed in 
Section VI. 

II. RELATED WORK  

Exiting dynamic SLAM methods use segmentation 
methods to remove dynamic objects from input images. The 
segmentation methods could be divided into deep learning-
based methods and geometry-based methods. In Dynamic-
SLAM [1], the authors used the Single-Shot multi-box 
Detector (SSD) [2] to detect the movable objects. Hence, it 
could not deal with objects which are moving but not movable, 
such as a chair being pulled by a human. Another limitation 
is that the mask detected by SSD is in the shape of a bounding 
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Figure 2.  System overview. ‘Object Segmentation’ and ‘Keypoints Extractor’ blocks are presented in Section IV, III.B and C respectively.

box which will cause some valid keypoints near the dynamic 
wobjects to be ignored too. DynaSLAM [3] combines Mask 
R-CNN [4] and a multi-view geometry method to do object 
detection and segmentation. The limitation is that Mask R-
CNN is not a real-time method. 

The traditional geometry-based methods usually depend 
on the essential matrix or fundamental matrix which represents 
the correlation between two consecutive frames. As these 
matrices are usually calculated before the segmentation of 
dynamic objects, they might be inaccurate. [5] is based on the 
essential matrix and the threshold needs to be set manually, 
which may not be an optimal value for all situations. [6] is an 
RGB-D SLAM in the dynamic environment with a geometry-
based segmentation method, which relies on the fundamental 
matrix and threshold as well. Besides, compared with ORB-
SLAM2 [7] in our framework, the back-end system in [6] is 
only for visual odometry without the global optimization and 
closed-loop detection parts.  

Earlier work on robust SLAM [8] in the dynamic 
environment does not consider how to segment out the 
dynamic objects. It proposed a keyframe update method to 
label the frames invalid when the invalid points are larger than 
90% compared to other keyframes. But it cannot deal with a 
sudden change in most of the scene and the SLAM is limited 
to work in small space.  

TABLE I.  CATEGORIES OF RELATED WORKS  

Categories Movable Moving Both 

Real-time Dynamic-SLAM 
[1] Reference [5]  

Non-
realtime 

 Reference [6] DynaSLAM [3] 
 

Table I summarizes related works. To the authors’ 
knowledge, a real-time method that deals with both kinds of 
dynamic objects does not exist. Even if it exists, it is still not 
suitable for accurate tracking, especially when dynamic 
objects occupy most of the view field. Considering all, it is 
difficult to use only one method for all purposes. 

III. MULTIPURPOSE SLAM FRAMEWORK 

A. Framework overview 
The framework overview is shown in Fig. 2. Using RGB 

frames as input, the localization can be done if the 

segmentation frames as input, the localization can be done if 
the segmentation method does not need depth frames. To get 
the dense point cloud map, depth frames are necessary. The 
differences from original ORB-SLAM2 are (1) extraction of 
uniformly distributed keypoints only in the static area and (2) 
the dense static object point cloud map could be generated. 

B. Dilated mask image 
We propose different segmentation techniques in Section 

IV. Here we explain post-processing of mask images with 
dilation. When we use the mask image to extract keypoints on 
the region of interest(ROI), many keypoints are extracted on 
the boundary of the mask and this causes many mismatches 
as shown in the top line of Fig. 3. In order to solve this 
problem, we use the dilate function to scale up the mask as 
shown in the lower row of Fig. 3. After this process, the 
matching result is significantly improved. 

Figure 3.  Keypoint matching result obtained using the original mask 
image (upper row) and the dilated mask image (lower row) 

As Fig. 4 shows, when the shape of the mask does not 
cover the dynamic object accurately, the dilation process also 
makes up for the inaccuracy of the segmentation result. 

Figure 4.  Dilation process makes up the inaccuracy of contour 
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C. Uniformly distributed keypoints extraction 
The keypoint extractor used in ORB-SLAM2 cannot use 

the mask image obtained as the result of dynamic object 
segmentation. However, the keypoint extractor in OpenCV 
can use it. The difference between the ORB-SLAM2 extractor 
and OpenCV extractor is that keypoints extracted by the 
former method are distributed uniformly as shown in the left 
of Fig. 5. In contrast, keypoints extracted by the OpenCV 
extractor concentrate in areas where good features exist as 
shown in the right of Fig. 5. The advantage of a uniform 
distribution of keypoints is shown by Absolute Trajectory 
Error (ATE) [9] comparison shown in Table II, especially on 
the sequence fr3_siting_halfsphere(fr3_sh) in [10] because in 
this sequence, the illumination condition is bad and the 
movement of the camera is intense.  

Figure 5.  Keypoints extracted by ORB extractor (left) and OpenCV 
extractor (right) 

Considering the above mentioned, we need a keypoint 
extractor which can use the mask image and extract uniformly 
distributed keypoints. Our solution is to improve the OpenCV 
extractor so that it can extract uniformly distributed keypoints. 
The improved extractor splits both the RGB image and mask 
image into 30*30 pixels patches first and then extracts the 
keypoints in each patch with the mask image. The final 
keypoint extraction result is shown in Fig. 6, where no 
keypoint is extracted inside the mask and keypoints are 
distributed uniformly. We also tested the ATE of improved 
OpenCV extractor. As shown in Table II, its accuracy is almost 
similar to that of ORB-SLAM2 extractor.  

Figure 6.    Keypoints extracted by improved OpenCV extractor 

TABLE II.  ATE COMPARISON BETWEEN ORB-SLAM2 EXTRACTOR, 
OPENCV EXTRACTOR, AND IMPROVED OPENCV EXTRACTOR  (UNIT:[M]) 

Sequences belong to TUM RGB-D dataset [10] 

The modified extractor keeps the real-time characteristic 
of ORB-SLAM2. we extract the maximum of 1000 keypoints 

in one frame with 5 times, and use the same dataset, with all 
the same parameter to test the tracking time 5 times, the 
average processing time is shown in Table III. 

TABLE III.  COMPUTATIONAL COSTS FOR  EXTRACTION AND 
TRACKING 

CPU: i7-7700hq 2.8GHz 

D. Dense point cloud generation   

                           (1) 

The formula for calculating a 3D point cloud from a 2D 
color image and a depth image is shown in Eq. (1). u and v 
represent the coordinates in frame coordinate. x, y, and z 
represent the coordinates in global coordinate. fx, fy, cx, cy and 
s are the camera parameters. In order to avoid redundancy of 
3D point cloud and unnecessary calculation, we only project 
the extracted keyframes, which are selected in the same way 
as in ORB-SLAM2. For obtaining the point cloud map of static 
objects, we use the mask image to segment the depth image, 
then project the segmented depth image into point cloud map. 

IV. SEGMENTATION METHODS 

A. Geometry-based method for a moving object 
 The overview of the proposed geometry-based 

segmentation method (hereinafter, called GS) is shown in Fig. 
7. The inputs are RGB and depth frames, the output is a mask 
image in which the value of pixels corresponding to dynamic 
objects is set to 255. 

Figure 7.  Geometry-based method overview. Rectangles and rounded 
rectangles represent processing and data respectively. 

For detecting the moving objects while the camera is 
moving, we need to find the projection mapping relationship 
between the image planes of the previous frame and the current 
frame, which is called the homography matrix (given by Eq. 
(2)). In Eq. (2), uC and vC, represent the coordinates of one pixel 
in the current frame and uL and vL do in the last frame. 
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SEQUENCE ORB-SLAM2 OPENCV IMPROVED 
OPENCV 

FR1_XYZ 0.0135 0.0120 0.0115 
FR1_DESK 0.0193 0.0219 0.0183 

FR2_3H 0.1128 0.0928 0.1156 
FR2_DESK 0.0072 0.0145 0.0068 
FR3_LOH 0.0098 0.0159 0.0105 
FR3_SH 0.0310 0.1958 0.0386 

 Keypoint extraction Tracking 

 
ORB-
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Improved 
OpenCV 
extractor 

ORB-
SLAM2 

extractor 

Improved 
OpenCV 
extractor 

Processing 
time 

[ms/frame] 
1.24 1.32 38 43 

  

(2) 
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After the input RGB frames are processed by grayscale and 
Gaussian filtering, the homography matrix is calculated by 
function findHomography with RANSAC in OpenCV library. 

Algorithm to detect and separate the dynamic object  
Input: LastImage, CurrentImage, LastDepth, CurrentDepth, 
threshold1, threshold2 

1: for each pixel (uL,vL) in LastImage do 
2:  (uC,vC)  = Homography matrix * (uL,vL) 
3: diff ← abs(IL (uL,vL) – IC (uC,vC)) 
4:    if diff > threshold1 
5:           DiffImg(uL,vL)	← 255 
6:    else   
7:           DiffImg(uL,vL) ← 0 
8:    end if 
9: end for (obtain the first image in Fig. 8) 
10: for each white pixel (u,v) in DiffImg do 
11：dL ← LastDepth(u,v), dC ← CurrentDepth(u,v) 
12:  if dL – dC > threshold2 then 
13:   Dyna_LastImg(u,v) ← 0, Dyna_CurrentImg(u,v)  ← 255 
14:       else if dC – dL > threshold2  
15:             Dyna_LastImg(u,v) ← 255, Dyna_CurrentImg(u,v)  ← 0 
16:       else if 
17:             Dyna_LastImg(u,v) ← 0, Dyna_CurrentImg(u,v) ← 0 
18:       end if 
19: end for (obtain the second the third image in Fig. 8)  

 

 Then all the pixels are traversed to calculate the absolute 
difference of intensities and it is compared with threshold1 (IL 
and IC are intensities of the last image and current image 
respectively) and the image (a) of Fig. 8 is obtained. The white 
and black pixels correspond to the moving and static objects 
respectively. This image contains the moving objects of the 
two frames. To separate them into the image (b) and (c) of Fig. 
8, the algorithm uses the change in depth values of the 
corresponding coordinates and it is compared with the 
threshold2 (dL and dC represent the depths in the last image and 
current image respectively). After the separation, all white 
pixels’ coordinates are traversed to get the ranges of u, v and 
depth shown as the rectangle in the image (c) of Fig. 8. 

Figure 8.  Dynamic binary pixels separation(from left to right: (a)DiffImg, 
(b)Dyna_LastImg, (c)Dyna_CurrentImg) 

We use the Voxel Grid Filter to downsample the point 
cloud for ensuring the efficiency of the algorithm. After 
clustering(the image (a) of Fig. 9), the bounding box of each 
cluster is obtained by the projection formula in Eq. (3) of the 
camera pinhole model and compared with the range of the area 
of dynamic pixels. Finally, the cluster corresponding to a 
dynamic object is decided. 

                           (3) 

Once we have determined the dynamic object cluster, we 
need to remove it in the original point cloud instead of the 

downsampled one. The solution is to perform the projection of 
the downsampled dynamic object cluster as a cross-section, 
using the Extract Polygonal Prism Data algorithm to remove 
the dynamic cluster in the original dense point cloud map, the 
prism’s cross-section is the previously projected shape. Then 
use the point cloud of static clusters to project back to the 2D 
image plane, the mask image is obtained. As shown the image 
(b) of Fig. 9, for the static area we set value of pixels to 255.  

Figure 9.  From left to right: (a)all clusters, (b)static mask image 

The limitations of this method are those it assumes that 
there is only one dynamic object and no occluded situation. 
Besides, since this method depends on the homography matrix 
and is sensitive to thresholds, if the dynamic object is 
dominant in the picture, the obtained homography matrix 
might be inaccurate. Table IV shows the processing time of 
each part in this algorithm under CPU i7-7700hq. 

TABLE IV.  PROCESSING TIME OF EACH PROCESS WITH 
FR3_WALKING_XYZ FROM TUM[12] 

B. Deep learning-based methods for movable objects 
We tested two deep learning-based segmentation methods, 

which are robust to occluded persons situation, called Mask R-
CNN and a lightweight deep learning-based method 
(hereinafter, called LWDL) [11]. Mask R-CNN is one of the 
instance segmentation methods, which was trained on the 
COCO dataset [12]. This segmentation method can detect up 
to 80 different kinds of common objects in everyday life. 
However, this kind of deep learning-based segmentation 
method requires the user to provide labels of dynamic objects. 
As we can see in Table V, LWDL can run in real-time with 
GPU, whereas Mask R-CNN cannot. However, as shown in 
Fig. 10, the robustness of LWDL against blurred frame is 
inferior to that of Mask R-CNN. 

Figure 10.  Robustness comparison between Mask R-CNN (left) and LWDL 
(right) 

C. Combination of movable and moving objects 
If the user’s purpose is to segment out both movable and 

moving objects, the user can combine two segmentation 
methods. One example is a scene where a human is pulling 
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TABLE V.  COMPUTATIONAL COST COMPARISON USING 
FR3_WALKING_XYZ FROM TUM[12] 

Method Mask R-CNN LWDL 
Processing 

Time 
[ms/frame]  

4137(CPU) 
673 (GPU) 

167 (CPU) 
17 (GPU) 

CPU: i7-7700hq 2.8GHz/ GPU: Nvidia GTX 1060 6GB 

a chair from the desk. In this case, the user can use Mask R-
CNN to segment the human first, then GS to segment out the 
moving chair. More details are shown in Fig. 11. This 
combination is suitable for obtaining a 3D model of a static 
environment offline. 

Figure 11.  Mask R-CNN + geometry-based method 

V. EXPERIMENTAL RESULTS 

In this section, we evaluate our framework combined with 
segmentation methods in Table VI with corresponding related 
works in Table I. The used dataset is TUM RGB-D dynamic 
sequence. In the low dynamic situation, two persons sit at a 
desk, talk, and gesticulate a little bit. In the high dynamic 
situation, they stand up and walk through an office scene.   

TABLE VI.  DIFFERENT SEGMENTATIONS  

Categories Movable Moving Both 

Real-time LWDL   

Non-realtime Mask R-CNN Geometry-based 
Segmentation (GS) 

Mask R-CNN + 
GS 

 

Table VII is the comparison between Dynamic-SLAM and 
ORB-SLAM2 with LWDL through ATE and RPE (Relative 
Pose Error) [13], which is usually used for the evaluation of 
visual odometry. According to this table, the accuracy of 
ORB-SLAM2 with LWDL is higher than the Dynamic-SLAM 
in most sequences. Besides, Dynamic-SLAM is a monocular 
SLAM and it cannot provide the dense point cloud map. 
However, if the depth information is available, we can provide 
the dense point cloud map as in the left of Fig. 12. 

To confirm the real-time ability, we set the fps of reading 
segmentation results as 15. Then, the mean tracking time is 
found to be 0.064 s, which is shorter than the input rate. Based 
on the definition of ‘real-time ability’ in ORB-SLAM2, we 

Figure 12.  Dense point cloud map by LWDL(left) and GS(right) 

could ensure real-time characteristic of this configuration. 

For the comparison in the category of non-realtime with 
moving object segmentation in Table VIII, we used GS. GS 
could not segment out multi-dynamic objects but, in some 
sequences in which one moving object occupies large 
proportion such as fr3_sitting_halfsphere in [10] and the low 
dynamic sequence such as fr3_ sitting_static in [10], the ATE 
and RPE are lower than reference [6]. The back-end of  [6] 
does not contain the global optimization and closure loop 
detection, but the ORB-SLAM2 in our framework has these 
features which are beneficial for the accuracy of the SLAM 
system. Whereas in some multi-high dynamic objects 
environment, the reference [6] has better performance than GS. 
Besides, [6] is an RGB-D SLAM but it does not provide a 
dense point cloud map. The dense point cloud map by GS is 
shown in the right of Fig. 12. Walking persons are remaining 
in the point cloud. 

The final comparison is between Mask R-CNN with GS 
and DynaSLAM. Table IX shows that the accuracy is similar 
because both of them use Mask R-CNN to segment the human, 
which is the main movable element in frames. This kind of 
combination is applicable for obtaining the dense point cloud 
map of static objects as Fig. 13 shows, because Mask R-CNN 
is more accurate than LWDL for movable objects, as we 
compared in Fig. 10. Moreover, unlike DynaSLAM, our 
framework has the update function when ORB-SLAM2 
detects the closed-loop. 

In the case of original ORB-SLAM2, due to the inaccuracy 
of camera pose, the point cloud belonging to the backboard is 
projected into different orientations as shown in the first figure 
of Fig. 13. The improvement of the dense point cloud map by 
GS is shown in Fig. 13. The backrest of the moving chair is 
excluded by GS.  

VI. CONCLUSIONS AND FUTURE WORKS  

In this paper, we found that a single segmentation method 
could not meet the requirements for all purposes of SLAM 
when using it in a dynamic environment. We proposed a 
framework which is compatible with different segmentation 
methods for different purposes and situations. Compared with 
existing dynamic SLAM methods, our system achieves similar 
or better performance in some aspects with a single framework. 

For future work, with the continuous development of 
computer vision technology, our framework could be used to 
compare different segmentation methods for evaluating its 
performance in the dynamic SLAM field. Besides, we will let 
the robot understand the environment at a high-level instead of 
the simple point cloud model.  
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TABLE VII.  ACCURACY COMPARISON BETWEEN DYNAMIC-SLAM[1] AND ORB-SLAM2 WITH LWDL[11]   (some data from original paper [1]) 

TUM RGB-D Datasets 
Sequence: Dynamic Objects 

ATE (cm) RMSE Translation RMSE (cm/frame) RMSE Rotation RMSE (deg/frame) RMSE 

Dynamic-
SLAM LWDL Improvement Dynamic-

SLAM LWDL Improvement Dynamic-
SLAM LWDL Improvement 

Low Dynamic 
Environment 

fr2/desk_with_person 1.873 0.316(Traj% 85.62) 83.12% 1.958 0.422 78.45% 0.833 0.283 66.03% 

fr3/sitting_xyz 0.601 0.298(Traj% 95.56) 50.42% 0.998 0.517 48.20% 0.613 0.325 46.98% 

fr3/sitting_halfsphere 1.461 0.992(Traj% 71.08) 32.10% 1.451 0.828 42.94% 0.551 0.439 20.32% 

 fr3/sitting_rpy 3.448 4.023(Traj% 61.08) -16.68% 4.303 4.832 -12.29% 0.991 1.231 -24.22% 

High Dynamic 
Environment 

fr3/walking_xyz 1.324 2.021(Traj% 98.49) -52.64% 1.796 0.970 45.99% 0.598 0.526 12.04% 

fr3/walking_halfsphere 2.139 0.434(Traj% 86.79) 79.71% 2.192 0.813 62.91% 0.666 0.408 38.74% 

fr3/walking_rpy 6.025 0.669(Traj% 81.10) 88.90% 5.605 0.544 90.29% 1.149 0.429 62.66% 

 

Figure 13.  (1-4 from left to right)Dense point cloud map generated by (a)ORB-SLAM2, (b)Mask R-CNN+GS, (c) and (d) are the details comparison of a 
chair back between only Mask RCNN and Mask R-CNN+GS.  

TABLE VIII.  ACCURACY COMPARISON BETWEEN [6] AND ORB-SLAM2 
WITH GS 

Sequence 
ATE (m) RMSE RPE Translation(m/s) 

/Rotation(deg/s) RMSE 

Reference[6] GS Reference[6] GS 

fr3_sittting_static 0.0066 0.0052 0.0077/0.2595 0.0058/0.2342 

fr3_sitting_halfsphere 0.0196 0.0185 0.0245/0.5643 0.0211/0.6023 

fr3_walking_static 0.3080 0.5532 0.1881/3.2101 0.3011/4.5342 

 

TABLE IX.  ACCURACY COMPARISON BETWEEN DYNASLAM AND ORB-
SLAM2 WITH MASK R-CNN AND GS 

Sequence (under 
RGB-D) 

DynaSLAM[3] 
ORB-SLAM2 with 

Mask R-CNN + 
GS 

Improvement 

RMSE (m) RMSE (m) % 

w_halfsphere 0.025 0.024 4 

w_xyz 0.015 0.017 -13.33 

w_rpy 0.035 0.036 -2.857 

w_static 0.006 0.006 0 

s_halfsphere 0.017 0.015 11.76 

s_xyz 0.015 0.015 0 
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