

Abstract— Nowadays, SLAM in the dynamic environment has
become a popular topic. This problem is called dynamic SLAM
where many solutions have been proposed to segment out the
dynamic objects that bring errors to camera tracking and
subsequent 3D reconstruction. However, state-of-the-art
dynamic SLAM methods face the problems of accuracy and
speed, which is due to the fact that one segmentation algorithm
cannot guarantee both points at the same time. In this paper, we
propose a multi-purpose dynamic SLAM framework to provide
a variety of selections for segmentation, each has its applicable
scene. The experimental results show that the framework is
compatible with different segmentation methods, which
improves corresponding existing methods in some aspects.

I. INTRODUCTION

Two major issues need to be solved when we use
Simultaneous Localization and Mapping (SLAM) technology
in a dynamic environment. One is the inaccuracy in camera
pose tracking because this calculation is based on a strict
condition: the position of the point between corresponding
pixels used for the calculation is constant in the global space,
i.e., the objects must be static and rigid. If the pixels in the
field of view are constantly moving, e.g., the regions
belonging to the human body in Fig. 1, and these points
participate in the pose calculation, they will continue to bring
errors to the system, eventually leading to loss of camera track.
The other issue is the point cloud corresponding to dynamic
objects remains in the final dense point cloud map, which may
not be suitable for the subsequent use (the right of Fig. 12).

Although there are several SLAM methods for a dynamic
environment, state-of-the-art dynamic SLAM methods face
the problems of accuracy and speed, which is because a single
segmentation algorithm cannot handle all the types of dynamic
objects and guarantee accuracy and speed at the same time.
There are basically two kinds of dynamic objects, moving and
movable. Moving objects are objects which are actually
moving in the scene, whereas movable objects are not
necessarily moving in the scene. In order to detect movable
objects, we need to give prior knowledge about moving
objects based on our life experience. Hence a single
segmentation method is difficult to handle different purposes
of users.

In this paper, we propose a multi-purpose dynamic SLAM
framework that is configurable depending on the user’s
purpose and it is also useful to compare different segmentation
methods on a single platform. Considering the above
difficulties, we sort out the 3 purposes of SLAM in the

1. Department of Intelligent Interaction Technologies, University of

Tsukuba, Ibaraki, Japan.
2. Humanoid Research Group, National Institute of Advanced Industrial

Science and Technology (AIST), Tsukuba, Japan.

Figure 1. Example of incorrect keypoint matching result in a dynamic
environment

dynamic environment. The first one is to obtain an accurate
visual localization result. For example, we need this kind of
SLAM to evaluate the trajectory of the mobile robot in the
warehouse. For this purpose, we should choose the
segmentation method for moving objects. The second is to get
the dense point cloud map of static objects which can be used
for the robot navigation. For this purpose, we should select
the segmentation method for movable objects. The last one is
for users who would like to do online processing, so the
segmentation must be done in real-time. In the proposed
framework, the segmentation methods can be replaced easily.
Besides, in addition to the sparse keypoint map, it can
generate a dense point cloud map of static objects if depth
information is available.

This paper is structured as follows. Section II discusses
the related work and corresponding category. Section III is
about the proposed multi-purpose SLAM framework, Section
IV demonstrates some segmentation methods. Section V
shows experimental results to compare the presented
segmentation methods with their corresponding existing
methods. Conclusions and future works are discussed in
Section VI.

II. RELATED WORK

Exiting dynamic SLAM methods use segmentation
methods to remove dynamic objects from input images. The
segmentation methods could be divided into deep learning-
based methods and geometry-based methods. In Dynamic-
SLAM [1], the authors used the Single-Shot multi-box
Detector (SSD) [2] to detect the movable objects. Hence, it
could not deal with objects which are moving but not movable,
such as a chair being pulled by a human. Another limitation
is that the mask detected by SSD is in the shape of a bounding

3. CNRS-AIST JRL (Joint Robotics Laboratory), UMI3218/RL, Tsukuba,
Japan.

Multi-purpose SLAM framework for Dynamic Environment
Leyuan Sun1,2, Fumio Kanehiro2,3,1, Iori Kumagai2, Yusuke Yoshiyasu3

 Proceedings of the 2020 IEEE/SICE
International Symposium on System Integration
 Honolulu, Hawaii, USA, January 12-15, 2020

978-1-7281-6667-4/20/$31.00 ©2020 IEEE 519

Authorized licensed use limited to: Tsinghua University. Downloaded on August 27,2022 at 01:52:00 UTC from IEEE Xplore. Restrictions apply.

Figure 2. System overview. ‘Object Segmentation’ and ‘Keypoints Extractor’ blocks are presented in Section IV, III.B and C respectively.

box which will cause some valid keypoints near the dynamic
wobjects to be ignored too. DynaSLAM [3] combines Mask
R-CNN [4] and a multi-view geometry method to do object
detection and segmentation. The limitation is that Mask R-
CNN is not a real-time method.

The traditional geometry-based methods usually depend
on the essential matrix or fundamental matrix which represents
the correlation between two consecutive frames. As these
matrices are usually calculated before the segmentation of
dynamic objects, they might be inaccurate. [5] is based on the
essential matrix and the threshold needs to be set manually,
which may not be an optimal value for all situations. [6] is an
RGB-D SLAM in the dynamic environment with a geometry-
based segmentation method, which relies on the fundamental
matrix and threshold as well. Besides, compared with ORB-
SLAM2 [7] in our framework, the back-end system in [6] is
only for visual odometry without the global optimization and
closed-loop detection parts.

Earlier work on robust SLAM [8] in the dynamic
environment does not consider how to segment out the
dynamic objects. It proposed a keyframe update method to
label the frames invalid when the invalid points are larger than
90% compared to other keyframes. But it cannot deal with a
sudden change in most of the scene and the SLAM is limited
to work in small space.

TABLE I. CATEGORIES OF RELATED WORKS

Categories Movable Moving Both

Real-time Dynamic-SLAM
[1] Reference [5]

Non-
realtime

 Reference [6] DynaSLAM [3]

Table I summarizes related works. To the authors’
knowledge, a real-time method that deals with both kinds of
dynamic objects does not exist. Even if it exists, it is still not
suitable for accurate tracking, especially when dynamic
objects occupy most of the view field. Considering all, it is
difficult to use only one method for all purposes.

III. MULTIPURPOSE SLAM FRAMEWORK

A. Framework overview
The framework overview is shown in Fig. 2. Using RGB

frames as input, the localization can be done if the

segmentation frames as input, the localization can be done if
the segmentation method does not need depth frames. To get
the dense point cloud map, depth frames are necessary. The
differences from original ORB-SLAM2 are (1) extraction of
uniformly distributed keypoints only in the static area and (2)
the dense static object point cloud map could be generated.

B. Dilated mask image
We propose different segmentation techniques in Section

IV. Here we explain post-processing of mask images with
dilation. When we use the mask image to extract keypoints on
the region of interest(ROI), many keypoints are extracted on
the boundary of the mask and this causes many mismatches
as shown in the top line of Fig. 3. In order to solve this
problem, we use the dilate function to scale up the mask as
shown in the lower row of Fig. 3. After this process, the
matching result is significantly improved.

Figure 3. Keypoint matching result obtained using the original mask
image (upper row) and the dilated mask image (lower row)

As Fig. 4 shows, when the shape of the mask does not
cover the dynamic object accurately, the dilation process also
makes up for the inaccuracy of the segmentation result.

Figure 4. Dilation process makes up the inaccuracy of contour

520

Authorized licensed use limited to: Tsinghua University. Downloaded on August 27,2022 at 01:52:00 UTC from IEEE Xplore. Restrictions apply.

C. Uniformly distributed keypoints extraction
The keypoint extractor used in ORB-SLAM2 cannot use

the mask image obtained as the result of dynamic object
segmentation. However, the keypoint extractor in OpenCV
can use it. The difference between the ORB-SLAM2 extractor
and OpenCV extractor is that keypoints extracted by the
former method are distributed uniformly as shown in the left
of Fig. 5. In contrast, keypoints extracted by the OpenCV
extractor concentrate in areas where good features exist as
shown in the right of Fig. 5. The advantage of a uniform
distribution of keypoints is shown by Absolute Trajectory
Error (ATE) [9] comparison shown in Table II, especially on
the sequence fr3_siting_halfsphere(fr3_sh) in [10] because in
this sequence, the illumination condition is bad and the
movement of the camera is intense.

Figure 5. Keypoints extracted by ORB extractor (left) and OpenCV
extractor (right)

Considering the above mentioned, we need a keypoint
extractor which can use the mask image and extract uniformly
distributed keypoints. Our solution is to improve the OpenCV
extractor so that it can extract uniformly distributed keypoints.
The improved extractor splits both the RGB image and mask
image into 30*30 pixels patches first and then extracts the
keypoints in each patch with the mask image. The final
keypoint extraction result is shown in Fig. 6, where no
keypoint is extracted inside the mask and keypoints are
distributed uniformly. We also tested the ATE of improved
OpenCV extractor. As shown in Table II, its accuracy is almost
similar to that of ORB-SLAM2 extractor.

Figure 6. Keypoints extracted by improved OpenCV extractor

TABLE II. ATE COMPARISON BETWEEN ORB-SLAM2 EXTRACTOR,
OPENCV EXTRACTOR, AND IMPROVED OPENCV EXTRACTOR (UNIT:[M])

Sequences belong to TUM RGB-D dataset [10]

The modified extractor keeps the real-time characteristic
of ORB-SLAM2. we extract the maximum of 1000 keypoints

in one frame with 5 times, and use the same dataset, with all
the same parameter to test the tracking time 5 times, the
average processing time is shown in Table III.

TABLE III. COMPUTATIONAL COSTS FOR EXTRACTION AND
TRACKING

CPU: i7-7700hq 2.8GHz

D. Dense point cloud generation

 (1)

The formula for calculating a 3D point cloud from a 2D
color image and a depth image is shown in Eq. (1). u and v
represent the coordinates in frame coordinate. x, y, and z
represent the coordinates in global coordinate. fx, fy, cx, cy and
s are the camera parameters. In order to avoid redundancy of
3D point cloud and unnecessary calculation, we only project
the extracted keyframes, which are selected in the same way
as in ORB-SLAM2. For obtaining the point cloud map of static
objects, we use the mask image to segment the depth image,
then project the segmented depth image into point cloud map.

IV. SEGMENTATION METHODS

A. Geometry-based method for a moving object
 The overview of the proposed geometry-based

segmentation method (hereinafter, called GS) is shown in Fig.
7. The inputs are RGB and depth frames, the output is a mask
image in which the value of pixels corresponding to dynamic
objects is set to 255.

Figure 7. Geometry-based method overview. Rectangles and rounded
rectangles represent processing and data respectively.

For detecting the moving objects while the camera is
moving, we need to find the projection mapping relationship
between the image planes of the previous frame and the current
frame, which is called the homography matrix (given by Eq.
(2)). In Eq. (2), uC and vC, represent the coordinates of one pixel
in the current frame and uL and vL do in the last frame.

z = d / s
x = (u − cx) ⋅ z / fx
y = (v − cy) ⋅ z / f y

⎧

⎨
⎪⎪

⎩
⎪
⎪

uC
vC
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

uL
vL
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

SEQUENCE ORB-SLAM2 OPENCV IMPROVED
OPENCV

FR1_XYZ 0.0135 0.0120 0.0115
FR1_DESK 0.0193 0.0219 0.0183

FR2_3H 0.1128 0.0928 0.1156
FR2_DESK 0.0072 0.0145 0.0068
FR3_LOH 0.0098 0.0159 0.0105
FR3_SH 0.0310 0.1958 0.0386

 Keypoint extraction Tracking

ORB-

SLAM2
extractor

Improved
OpenCV
extractor

ORB-
SLAM2

extractor

Improved
OpenCV
extractor

Processing
time

[ms/frame]
1.24 1.32 38 43

(2)

521

Authorized licensed use limited to: Tsinghua University. Downloaded on August 27,2022 at 01:52:00 UTC from IEEE Xplore. Restrictions apply.

After the input RGB frames are processed by grayscale and
Gaussian filtering, the homography matrix is calculated by
function findHomography with RANSAC in OpenCV library.

Algorithm to detect and separate the dynamic object
Input: LastImage, CurrentImage, LastDepth, CurrentDepth,
threshold1, threshold2

1: for each pixel (uL,vL) in LastImage do
2: (uC,vC) = Homography matrix * (uL,vL)
3: diff ← abs(IL (uL,vL) – IC (uC,vC))
4: if diff > threshold1
5: DiffImg(uL,vL)	← 255
6: else
7: DiffImg(uL,vL) ← 0
8: end if
9: end for (obtain the first image in Fig. 8)
10: for each white pixel (u,v) in DiffImg do
11：dL ← LastDepth(u,v), dC ← CurrentDepth(u,v)
12: if dL – dC > threshold2 then
13: Dyna_LastImg(u,v) ← 0, Dyna_CurrentImg(u,v) ← 255
14: else if dC – dL > threshold2
15: Dyna_LastImg(u,v) ← 255, Dyna_CurrentImg(u,v) ← 0
16: else if
17: Dyna_LastImg(u,v) ← 0, Dyna_CurrentImg(u,v) ← 0
18: end if
19: end for (obtain the second the third image in Fig. 8)

 Then all the pixels are traversed to calculate the absolute
difference of intensities and it is compared with threshold1 (IL
and IC are intensities of the last image and current image
respectively) and the image (a) of Fig. 8 is obtained. The white
and black pixels correspond to the moving and static objects
respectively. This image contains the moving objects of the
two frames. To separate them into the image (b) and (c) of Fig.
8, the algorithm uses the change in depth values of the
corresponding coordinates and it is compared with the
threshold2 (dL and dC represent the depths in the last image and
current image respectively). After the separation, all white
pixels’ coordinates are traversed to get the ranges of u, v and
depth shown as the rectangle in the image (c) of Fig. 8.

Figure 8. Dynamic binary pixels separation(from left to right: (a)DiffImg,
(b)Dyna_LastImg, (c)Dyna_CurrentImg)

We use the Voxel Grid Filter to downsample the point
cloud for ensuring the efficiency of the algorithm. After
clustering(the image (a) of Fig. 9), the bounding box of each
cluster is obtained by the projection formula in Eq. (3) of the
camera pinhole model and compared with the range of the area
of dynamic pixels. Finally, the cluster corresponding to a
dynamic object is decided.

 (3)

Once we have determined the dynamic object cluster, we
need to remove it in the original point cloud instead of the

downsampled one. The solution is to perform the projection of
the downsampled dynamic object cluster as a cross-section,
using the Extract Polygonal Prism Data algorithm to remove
the dynamic cluster in the original dense point cloud map, the
prism’s cross-section is the previously projected shape. Then
use the point cloud of static clusters to project back to the 2D
image plane, the mask image is obtained. As shown the image
(b) of Fig. 9, for the static area we set value of pixels to 255.

Figure 9. From left to right: (a)all clusters, (b)static mask image

The limitations of this method are those it assumes that
there is only one dynamic object and no occluded situation.
Besides, since this method depends on the homography matrix
and is sensitive to thresholds, if the dynamic object is
dominant in the picture, the obtained homography matrix
might be inaccurate. Table IV shows the processing time of
each part in this algorithm under CPU i7-7700hq.

TABLE IV. PROCESSING TIME OF EACH PROCESS WITH
FR3_WALKING_XYZ FROM TUM[12]

B. Deep learning-based methods for movable objects
We tested two deep learning-based segmentation methods,

which are robust to occluded persons situation, called Mask R-
CNN and a lightweight deep learning-based method
(hereinafter, called LWDL) [11]. Mask R-CNN is one of the
instance segmentation methods, which was trained on the
COCO dataset [12]. This segmentation method can detect up
to 80 different kinds of common objects in everyday life.
However, this kind of deep learning-based segmentation
method requires the user to provide labels of dynamic objects.
As we can see in Table V, LWDL can run in real-time with
GPU, whereas Mask R-CNN cannot. However, as shown in
Fig. 10, the robustness of LWDL against blurred frame is
inferior to that of Mask R-CNN.

Figure 10. Robustness comparison between Mask R-CNN (left) and LWDL
(right)

C. Combination of movable and moving objects
If the user’s purpose is to segment out both movable and

moving objects, the user can combine two segmentation
methods. One example is a scene where a human is pulling

u = fx
x
z

 + cx

v = f y
y
z

 + cy

⎧

⎨
⎪⎪

⎩
⎪
⎪

Process

Matching
for

homography
matrix

Image
difference

Separation
of

dynamic
pixels

Down
sampling

Remove
cluster Total

Processing
Time(s) 0.0503 0.0392 0.0135 0.0256 0.318 0.4466

522

Authorized licensed use limited to: Tsinghua University. Downloaded on August 27,2022 at 01:52:00 UTC from IEEE Xplore. Restrictions apply.

TABLE V. COMPUTATIONAL COST COMPARISON USING
FR3_WALKING_XYZ FROM TUM[12]

Method Mask R-CNN LWDL
Processing

Time
[ms/frame]

4137(CPU)
673 (GPU)

167 (CPU)
17 (GPU)

CPU: i7-7700hq 2.8GHz/ GPU: Nvidia GTX 1060 6GB

a chair from the desk. In this case, the user can use Mask R-
CNN to segment the human first, then GS to segment out the
moving chair. More details are shown in Fig. 11. This
combination is suitable for obtaining a 3D model of a static
environment offline.

Figure 11. Mask R-CNN + geometry-based method

V. EXPERIMENTAL RESULTS

In this section, we evaluate our framework combined with
segmentation methods in Table VI with corresponding related
works in Table I. The used dataset is TUM RGB-D dynamic
sequence. In the low dynamic situation, two persons sit at a
desk, talk, and gesticulate a little bit. In the high dynamic
situation, they stand up and walk through an office scene.

TABLE VI. DIFFERENT SEGMENTATIONS

Categories Movable Moving Both

Real-time LWDL

Non-realtime Mask R-CNN Geometry-based
Segmentation (GS)

Mask R-CNN +
GS

Table VII is the comparison between Dynamic-SLAM and
ORB-SLAM2 with LWDL through ATE and RPE (Relative
Pose Error) [13], which is usually used for the evaluation of
visual odometry. According to this table, the accuracy of
ORB-SLAM2 with LWDL is higher than the Dynamic-SLAM
in most sequences. Besides, Dynamic-SLAM is a monocular
SLAM and it cannot provide the dense point cloud map.
However, if the depth information is available, we can provide
the dense point cloud map as in the left of Fig. 12.

To confirm the real-time ability, we set the fps of reading
segmentation results as 15. Then, the mean tracking time is
found to be 0.064 s, which is shorter than the input rate. Based
on the definition of ‘real-time ability’ in ORB-SLAM2, we

Figure 12. Dense point cloud map by LWDL(left) and GS(right)

could ensure real-time characteristic of this configuration.

For the comparison in the category of non-realtime with
moving object segmentation in Table VIII, we used GS. GS
could not segment out multi-dynamic objects but, in some
sequences in which one moving object occupies large
proportion such as fr3_sitting_halfsphere in [10] and the low
dynamic sequence such as fr3_ sitting_static in [10], the ATE
and RPE are lower than reference [6]. The back-end of [6]
does not contain the global optimization and closure loop
detection, but the ORB-SLAM2 in our framework has these
features which are beneficial for the accuracy of the SLAM
system. Whereas in some multi-high dynamic objects
environment, the reference [6] has better performance than GS.
Besides, [6] is an RGB-D SLAM but it does not provide a
dense point cloud map. The dense point cloud map by GS is
shown in the right of Fig. 12. Walking persons are remaining
in the point cloud.

The final comparison is between Mask R-CNN with GS
and DynaSLAM. Table IX shows that the accuracy is similar
because both of them use Mask R-CNN to segment the human,
which is the main movable element in frames. This kind of
combination is applicable for obtaining the dense point cloud
map of static objects as Fig. 13 shows, because Mask R-CNN
is more accurate than LWDL for movable objects, as we
compared in Fig. 10. Moreover, unlike DynaSLAM, our
framework has the update function when ORB-SLAM2
detects the closed-loop.

In the case of original ORB-SLAM2, due to the inaccuracy
of camera pose, the point cloud belonging to the backboard is
projected into different orientations as shown in the first figure
of Fig. 13. The improvement of the dense point cloud map by
GS is shown in Fig. 13. The backrest of the moving chair is
excluded by GS.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we found that a single segmentation method
could not meet the requirements for all purposes of SLAM
when using it in a dynamic environment. We proposed a
framework which is compatible with different segmentation
methods for different purposes and situations. Compared with
existing dynamic SLAM methods, our system achieves similar
or better performance in some aspects with a single framework.

For future work, with the continuous development of
computer vision technology, our framework could be used to
compare different segmentation methods for evaluating its
performance in the dynamic SLAM field. Besides, we will let
the robot understand the environment at a high-level instead of
the simple point cloud model.

523

Authorized licensed use limited to: Tsinghua University. Downloaded on August 27,2022 at 01:52:00 UTC from IEEE Xplore. Restrictions apply.

TABLE VII. ACCURACY COMPARISON BETWEEN DYNAMIC-SLAM[1] AND ORB-SLAM2 WITH LWDL[11] (some data from original paper [1])

TUM RGB-D Datasets
Sequence: Dynamic Objects

ATE (cm) RMSE Translation RMSE (cm/frame) RMSE Rotation RMSE (deg/frame) RMSE

Dynamic-
SLAM LWDL Improvement Dynamic-

SLAM LWDL Improvement Dynamic-
SLAM LWDL Improvement

Low Dynamic
Environment

fr2/desk_with_person 1.873 0.316(Traj% 85.62) 83.12% 1.958 0.422 78.45% 0.833 0.283 66.03%

fr3/sitting_xyz 0.601 0.298(Traj% 95.56) 50.42% 0.998 0.517 48.20% 0.613 0.325 46.98%

fr3/sitting_halfsphere 1.461 0.992(Traj% 71.08) 32.10% 1.451 0.828 42.94% 0.551 0.439 20.32%

 fr3/sitting_rpy 3.448 4.023(Traj% 61.08) -16.68% 4.303 4.832 -12.29% 0.991 1.231 -24.22%

High Dynamic
Environment

fr3/walking_xyz 1.324 2.021(Traj% 98.49) -52.64% 1.796 0.970 45.99% 0.598 0.526 12.04%

fr3/walking_halfsphere 2.139 0.434(Traj% 86.79) 79.71% 2.192 0.813 62.91% 0.666 0.408 38.74%

fr3/walking_rpy 6.025 0.669(Traj% 81.10) 88.90% 5.605 0.544 90.29% 1.149 0.429 62.66%

Figure 13. (1-4 from left to right)Dense point cloud map generated by (a)ORB-SLAM2, (b)Mask R-CNN+GS, (c) and (d) are the details comparison of a
chair back between only Mask RCNN and Mask R-CNN+GS.

TABLE VIII. ACCURACY COMPARISON BETWEEN [6] AND ORB-SLAM2
WITH GS

Sequence
ATE (m) RMSE RPE Translation(m/s)

/Rotation(deg/s) RMSE

Reference[6] GS Reference[6] GS

fr3_sittting_static 0.0066 0.0052 0.0077/0.2595 0.0058/0.2342

fr3_sitting_halfsphere 0.0196 0.0185 0.0245/0.5643 0.0211/0.6023

fr3_walking_static 0.3080 0.5532 0.1881/3.2101 0.3011/4.5342

TABLE IX. ACCURACY COMPARISON BETWEEN DYNASLAM AND ORB-
SLAM2 WITH MASK R-CNN AND GS

Sequence (under
RGB-D)

DynaSLAM[3]
ORB-SLAM2 with

Mask R-CNN +
GS

Improvement

RMSE (m) RMSE (m) %

w_halfsphere 0.025 0.024 4

w_xyz 0.015 0.017 -13.33

w_rpy 0.035 0.036 -2.857

w_static 0.006 0.006 0

s_halfsphere 0.017 0.015 11.76

s_xyz 0.015 0.015 0

REFERENCES
[1] Xiao, Linhui, et al, “Dynamic-SLAM: Semantic monocular visual

localization and mapping based on deep learning in dynamic
environment,” Robotics and Autonomous Systems, vol. 117, 2019, pp.
1-16.

[2] Liu W, et al, “SSD: Single Shot MultiBox Detector,” European
conference on computer vision, 2016, pp. 21-37.

[3] Bescos, Berta, et al. “DynaSLAM: Tracking, mapping, and inpainting
in dynamic scenes,” IEEE Robotics and Automation Letters vol. 3,
no.4, 2018, pp. 4076-4083.

[4] He, Kaiming, et al, “Mask R-CNN,” The IEEE International
Conference on Computer Vision (ICCV), 2017, pp. 2961-2969

[5] Cheng, Jiyu, Yuxiang Sun, and Max Q-H. Meng, “Improving
monocular visual SLAM in dynamic environments: an optical-flow-
based approach,” Advanced Robotics vol. 33, no.12, pp. 576-589

[6] Wang, Runzhi, et al, “A New RGB-D SLAM Method with Moving
Object Detection for Dynamic Indoor Scenes,” Remote Sensing,
vol. 11, no.10, 2019, pp. 1143.

[7] Mur-Artal, Raul, and Juan D. Tardós, “ORB-SLAM2: An Open-
Source SLAM System for Monocular, Stereo, and RGB-D
Cameras,” IEEE Transactions on Robotics, vol. 33, no.5, 2017, pp.
1255-1262.

[8] Tan, Wei, et al, “Robust monocular SLAM in dynamic
environments,” IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), 2013, pp. 209-218.

[9] Olson, Edwin, and Michael Kaess, “Evaluating the performance of
map optimization algorithms,” RSS Workshop on Good Experimental
Methodology in Robotics, vol. 15, 2009.

[10] Sturm, Jürgen, et al, “A benchmark for the evaluation of RGB-D
SLAM systems,” IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2012, pp. 573-580.

[11] https://github.com/AntiAegis/Human-Segmentation-PyTorch
[12] Lin T Y, Maire M, Belongie S, et al, “Microsoft coco: Common

objects in context,” ECCV, 2014, pp. 740-755.
[13] Konolige, Kurt, Motilal Agrawal, and Joan Sola, “Large-scale visual

odometry for rough terrain,” Robotics research, 2010, pp. 201-212.

524

Authorized licensed use limited to: Tsinghua University. Downloaded on August 27,2022 at 01:52:00 UTC from IEEE Xplore. Restrictions apply.

