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Most simultaneous localization and mapping (SLAM)
systems assume that SLAM is conducted in a static
environment. When SLAM is used in dynamic envi-
ronments, the accuracy of each part of the SLAM sys-
tem is adversely affected. We term this problem as
dynamic SLAM. In this study, we propose solutions
for three main problems in dynamic SLAM: cam-
era tracking, three-dimensional map reconstruction,
and loop closure detection. We propose to employ
geometry-based method, deep learning-based method,
and the combination of them for object segmenta-
tion. Using the information from segmentation to
generate the mask, we filter the keypoints that lead
to errors in visual odometry and features extracted
by the CNN from dynamic areas to improve the per-
formance of loop closure detection. Then, we vali-
date our proposed loop closure detection method using
the precision-recall curve and also confirm the frame-
work’s performance using multiple datasets. The ab-
solute trajectory error and relative pose error are used
as metrics to evaluate the accuracy of the proposed
SLAM framework in comparison with state-of-the-art
methods. The findings of this study can potentially
improve the robustness of SLAM technology in situa-
tions where mobile robots work together with humans,
while the object-based point cloud byproduct has po-
tential for other robotics tasks.

Keywords: visual SLAM, dynamic environment, loop
closure detection

1. Introduction

Nowadays, mobile robots can rely on simultaneous
localization and mapping (SLAM) technology for au-
tonomous travel under favorable conditions [1, 2], how-
ever, several issues must be addressed when SLAM tech-

nology is used in robotics applications in a dynamic en-
vironment. Most visual odometry calculations in a visual
SLAM framework are based on keypoint tracking, which
is based on the strict assumption that the positions of the
extracted keypoints are constant in a global sense. In other
words, all objects in the frame must be static and rigid.
When keypoints are extracted from a moving human, as
shown in Fig. 1(a), these keypoints participate in camera
pose estimation, which introduces outliers into the sys-
tem. In severe cases, the system tends to even lose track
of the camera. Another issue that must be considered is
that the point cloud corresponding to dynamic objects ex-
ists in the final dense point cloud, as shown in Fig. 1(b),
even if they are projected into correct global positions.
This is not useful for subsequent tasks such as navigation.

Loop closure detection (LCD) is an important compo-
nent of SLAM. It affects the accuracy of an estimated tra-
jectory and global map consistency over a long period of
time. Because LCD provides the correlation between the
current data and all historical data, it also helps in the
re-localization of a SLAM system when the tracking is
lost. Therefore, it improves the accuracy and robustness
of the entire SLAM system. However, when dynamic ob-
jects occur, LCD becomes more difficult because these
objects add new features and occlude some original fea-
tures, as shown in the left-hand illustration of Fig. 1(c).
Although many dynamic SLAM frameworks based on
ORB-SLAM2 [3] have been proposed, most of them do
not focus on the problem of LCD in dynamic environ-
ments.

This paper presents different segmentation methods to
meet different requirements, which are the main contri-
butions of our previous work [4]. Moreover, we use the
VGG-16 [5], which is a simple architecture with high ac-
curacy in the object recognition task [6], and it is also used
for the convolution processing of the deep-learning based
segmentation FCN-VGG16 [7] in our proposed frame-
work. By comparing each layer’s output, we found that
the pooling 4 layer of VGG-16 provides maximum ac-
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(a) Example of an incorrect keypoint matching result in a dynamic
environment.

(b) Point clouds corresponding to dynamic objects remaining in the
map.

(c) Dynamic objects make loop closure detection difficult, as shown
in the first column. Heatmaps generated using a CNN without and
with union masks, as shown in the second and third columns, re-
spectively.

Fig. 1. Problems observed when SLAM is used in a dy-
namic environment.

curacy for feature extraction in our task. In addition,
we manually generated dynamic loop closure datasets for
testing and used the precision-recall curve as a quantita-
tive evaluation metric.

Another contribution of our previous work [4] is dense
point cloud generation with static objects. Because we
have used semantic segmentation in this study, we also
added an object-oriented point cloud mapping function.
In addition, we developed a graphical user interface (GUI)
that helps the user to extract the point cloud information
of each object to facilitate subsequent tasks such as pose
estimation and object manipulation.

The remainder of this paper is structured as follows.
Section 2 discusses the work related to the dynamic
SLAM and LCD. Section 3 describes the proposed vi-
sual SLAM framework and details of the proposed con-
volutional neural network (CNN)-based feature extraction
with a union mask for the loop closure detection problem
in a dynamic environment. Section 4 presents the experi-
mental results, including the loop closure experiments and
the accuracy of the entire SLAM system on different types
of datasets. Finally, the conclusions are presented in Sec-
tion 5.

The main contributions of this work are as follows:

• We propose and validate a CNN-based feature ex-
traction with the union mask method for loop closure
detection in a dynamic environment, not only us-
ing the precision-recall curve but also on the SLAM
framework.

• We propose an integrated SLAM framework that can
solve three main problems in dynamic SLAM: cam-
era tracking, removal of dynamic objects from scene
point clouds, and loop closure detection.

2. Related Work

2.1. Dynamic SLAM
Most dynamic SLAM systems solve the camera-

tracking problem through dynamic object segmentation.
Dynamic objects can be categorized into moving objects,
such as humans and animals, and movable objects, such as
a chair, which can be moved by a human. Objects in these
two categories are usually segmented using deep learning-
based methods and geometry-based methods [4].

• Xiao et al. [8] used a single-shot multi-box detector
(SSD) [9] to detect a human for post-processing key-
point filtering. The shape of the mask is a bounding
box that causes valid keypoints near the dynamic ob-
jects to be filtered. This process may cause a large
amount of useful information to be lost, especially
when moving objects occupy the bulk of the image.

• To determine which pixels belong to the dynamic ob-
jects, Wang et al. [10] and Cheng et al. [11] proposed
methods to use the multi-view geometry relationship
represented by the fundamental matrix and essential
matrix, respectively. These matrices are calculated
before dynamic object segmentation; hence, these
methods assume that most pixels of the image cor-
respond to a static scene. In addition, the back ends
of these frameworks do not address the point cloud
map reconstruction problem.

• DynaSLAM [12] combines deep learning-based seg-
mentation with geometry-based segmentation and
provides a dense point cloud map that excludes dy-
namic objects. However, the segmentation method
Mask R-CNN [13] that was adopted is not a real-
time method, which limits the scenarios in which
DynaSLAM can be used.

• DS-SLAM [14] uses SegNet [15] as a semantic seg-
mentation structure and a fundamental matrix-based
moving object consistency check to select point
clouds corresponding to moving objects after seman-
tic segmentation. However, unlike our framework,
the system does not generate a static point cloud.

Moreover, none of the aforementioned frameworks
consider the problems associated with LCD in dynamic
environments.
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Fig. 2. Overview of the framework. Rectangles: processing; rounded rectangles: data.

2.2. LCD
In general, there are two ways to extract features for

LCD. One method uses manually designed features such
as ORB, SIFT, and SURF, while the other uses CNNs to
extract features.

• FAB-MAP [16] is similar to Bag of Words
(BoW) [17] with the manually designed feature
SURF used to perform place recognition. The exper-
imental results showed that FAB-MAP is sufficiently
fast to perform online LCD in mobile robotics. How-
ever, its limitations are similar to those of the BoW
model, which means that it is not robust to the envi-
ronments where moving objects exist. ORB-SHOT
SLAM [18] improves the traditional BoW perfor-
mance using 3D SHOT descriptors to describe the
ORB corners and train a 3D vocabulary based on
Bag-of-Visual-Words (BoVW). Although better tra-
jectory estimation results were achieved compared
with ORB-SLAM2, the dynamic environment situa-
tion was not considered in the experiments.

• Ref. [19] uses pre-trained AlexNet to extract features
and compare the performance of each CNN layer.
Sünderhau et al. found that the mid-layer of the net-
work was the most robust for the place recognition
task. In addition, they showed that the performance
of the traditional BoW was worse than that of the
CNN-based feature extraction method. They also
found that the mid-layer was the most robust layer
for the place recognition task. However, [19] and
other similar related works [20–24] did not focus on
the dynamic environment, which is the main differ-
ence between from our research.

Most importantly, none of these studies evaluated the
performance of their methods with a SLAM system in dy-
namic environments.

3. SLAM Framework

3.1. Framework Overview
An overview of the proposed SLAM framework is

shown in Fig 2. The differences with the original ORB-
SLAM2, which is the basic framework of this study, are
as follows:

1. Uniformly distributed keypoints are extracted only
from static areas.

2. A dense RGB static object point cloud map or the
object-oriented semantic map can be generated using
the GUI.

3. A CNN-based method for features extraction with a
union mask, especially for the LCD thread in a dy-
namic environment, is implemented.

3.2. Segmentation
3.2.1. Semantic Segmentation

We used a semantic segmentation framework FCN-
VGG16 [7] that was trained on the dataset presented
in [25]. This segmentation model can identify up to
150 classes of objects in daily life, and the classes for dy-
namic objects must be specified in advance. In this study,
we consider that a human is the only dynamic object in
most environmental scenes. We mask the regions seg-
mented out by the trained network in the “Human” class
by marking the corresponding pixels in white.

3.2.2. Geometry-Based Segmentation
We also employed geometry-based segmentation (GS),

which was proposed in our previous work [4]. Compared
with deep learning-based methods, the advantage of GS is
that it can identify moving objects, as shown in Fig. 3(b).
A limitation of this method is that it is a homography-
based method, and the accuracy of the homography ma-
trix depends on whether the points used for its compu-
tation lie on a planar surface, as shown in Fig 3(a). In
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(a) Continuous walking human segmentation, the background is a
planar surface.

(b) Point cloud of waving tennis racket segmentation,
with the segmented image and its point cloud.

Fig. 3. Example of geometry-based segmentation.

Fig. 4. Semantic segmentation + GS method.

addition, the points used to compute the homography ma-
trix should belong to static objects, which means that the
dynamic objects should not occupy a large part of the im-
age.

3.2.3. Semantic Segmentation Fused with GS
The combination of a semantic segmentation method

and the GS method is suitable for many situations, for ex-
ample, a situation in which a human pulls a chair from a
desk. As shown in Fig. 4, the human is first segmented
by the semantic segmentation network, and then the GS
detects the chair when it is moving. Because we already
have a mask image that filters out the pixels belonging
to the human, we can use the pixels in the static area to
calculate the homography. This improves the accuracy of
the homography matrix, especially when moving humans
occupy most of the view in adjacent frames. We do not

pre-define the chair as a movable object that can be seg-
mented through semantic segmentation because the chair
is only moving for a short duration. Most of the time, the
chair is static in this dataset. It is difficult to pre-define
all objects that have the potential to move, therefore, this
combined segmentation is suitable for obtaining a rela-
tively complete static dense point cloud map in a dynamic
environment.

3.3. Uniformly Distributed Keypoint Extraction
and Matching with Dilated Mask

As mentioned in [4], uniformly distributed keypoints
(Figs. 5(b)–(d)) can improve the accuracy of SLAM, es-
pecially when bad illumination and blurred image situa-
tions occur, as shown in Fig. 5(a). After using the di-
lated mask, we can solve the first problem of dynamic
SLAM, that is, difficult camera tracking due to keypoints
extracted from dynamic objects, as shown in Fig. 6.

3.4. LCD
3.4.1. LCD in Dynamic Environments

In ORB-SLAM2, the BoW model is used to calculate
the similarity between two frames. The purpose of BoW
is to describe a frame according to “what type of features
are within it.” These features are also called “words,” and
many words together form a dictionary. A frame can be
converted into a vector of words using a dictionary. The
similarity between two frames is then obtained by calcu-
lating the distance between the two vectors.

In a static environment, the BoW is a robust and effec-
tive method [17]. However, when moving objects exist in
the environment, the new words extracted from dynamic
objects and the words hidden by the dynamic objects tend
to have a negative effect on the calculation of the similar-
ity score in the LCD.

Moreover, many studies [19–24] have confirmed that
using a CNN to extract features is more robust and ac-
curate than manually handcrafted features. Considering
the above, we propose a CNN-based feature extraction
method with a union mask for LCD in a dynamic envi-
ronment.

3.4.2. Proposed Method for LCD in a Dynamic
Environment

The main idea is similar to the solution for the first
problem, that is, using only the features from the static
area. Because we use the FCN-VGG16 semantic segmen-
tation model, to fully exploit this architecture, we com-
pare the output of each layer in its convolutional part,
VGG-16. The dimensionality of each layer used is shown
in Table 1.

Figure 7 shows the process of the proposed method
used to calculate the similarity score between the two im-
ages. We use the first layer (pooling 1) as an example to
explain the details as follows.
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(a) Original image with bad illumi-
nation and blur before segmentation.

(b) Keypoints extracted using the
ORB-SLAM2 extractor after seg-
mentation.

(c) Keypoints extracted using the
OpenCV extractor after segmenta-
tion.

(d) Keypoints extracted using the
uniformly distributed extractor with
a dilated mask.

Fig. 5. Comparison of the keypoint extractors in the proposed framework and ORB-SLAM2. The green ellipses indicate contours
with no keypoints, while the red ellipses represent regions with uniformly distributed keypoints.

Fig. 6. Keypoints matching a with dilated mask.

Table 1. Dimensionality of each layer in VGG-16.

Layer Dimensions Layer Dimensions
Pooling layer 1 240×320×64 Pooling layer 5 15×20×512
Pooling layer 2 120×160×128 Fully connected 4096×1

layer 6
Pooling layer 3 60×80×256 Fully connected 4096×1

layer 7
Pooling layer 4 30×40×512 Softmax layer 8 1000×1

Fig. 7. Proposed CNN-based method for LCD in dynamic environment.
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Fig. 8. Union mask generation.

Fig. 9. Heatmaps of different layers used in VGG-16. Here, the first row is the original heatmaps, while the second row was
generated using our proposed method.

1. The input image size is 640× 480, and the binary
mask image is obtained from semantic segmentation
(0 is the human area, 1 is the static area).

2. Union processing is performed between the two bi-
nary mask images, as shown in Fig. 8.

3. The union mask image is resized to 240× 320 and
stacked into 64 channels. This is then flattened as
the union mask vector (the 1st vector in the legend
of Fig. 7).

4. The feature maps are extracted from the pooling 1
layer with a size of 240×320×64, and then flattened
as a vector (the 2nd and 3rd vectors in the legend of
Fig. 7).

5. Element-wise multiplication is performed between
the union mask vector and the two image vectors
from the previous step. Then, we obtain two image
vectors, as shown by the 4th and 5th vectors in the
legend of Fig. 7.

6. The cosine similarity between two vectors is calcu-
lated using Eq. (1), which is a well-known distance

function commonly used in CNN-based place recog-
nition tasks [19–24] between two vectors.

To visualize the features extracted by each layer, we
summed all the feature maps in that layer to produce one
heatmap. From the initial layers shown in Fig. 9, we can
see that the CNN focuses on the boundary information
of the objects, and the deeper the CNN layers, the more
abstract features it learns.

A limitation of this method is that in the case where
the dynamic objects occupy a large fraction of the im-
age, significant information will be lost. Even in the case
of humans, using very little information to calculate the
similarity is a very challenging task. In addition, element-
wise multiplication with a binary mask vector will insert
0 elements in the final two vectors at the same position,
increasing the similarities to some extent. However, the
impact of this limitation depends on how different the un-
masked areas of the images are, and the extent to which
the area is occupied by the dynamic objects.

cosine(vec1,vec2) =
vec1 ·vec2

‖vec1‖ · ‖vec2‖ . . . . (1)
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3.5. Dense Point Object-Oriented Point Cloud
Generation with a GUI

The formula for calculating a 3D point cloud from a 2D
color image and depth image is as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

z =
d
s

x = (u− cx) · z
fx

y = (v− cy) · z
fy

. . . . . . . . . . (2)

Here, u and v represent the coordinates in the frame co-
ordinate system, whereas x, y, and z represent the coordi-
nates in global coordinate system. Further, fx, fy, cx, cy,
and s are the camera parameters. The construction of the
point cloud map requires the projection of multiple frames
from different perspectives in the environment. To avoid
redundancy in the 3D point cloud and unnecessary calcu-
lations, we only project the extracted keyframes, which
are selected in the same way as in ORB-SLAM2.

As the label of each pixel from the semantic segmenta-
tion is known, we can also perform depth-based semantic
segmentation for object-oriented point cloud generation.
To guarantee the accuracy of the transformation matrix
T ∈ R

4×4, all static pixels are used for its estimation. The
GUI provides common object labels in an indoor environ-
ment for user selection. Users can not only see whether
all the objects have been projected accurately (including
moving humans), as shown in Fig. 10(b), but also select
the label of an object of interest using the left buttons so
only that object is shown, as shown in the right-hand il-
lustration of Fig. 10(a).

4. Experimental Results and Evaluation

4.1. LCD and Evaluation
We used the well-known TUM RGB-D dataset and

benchmark [26] to perform the SLAM system experi-
ments. However, this dataset does not provide the ground
truth of the loop closure pairs. We followed the same way
as [27] to generate them using the steps detailed below.

1. Select the keyframes computed by ORB-SLAM2
from this sequence, as the similarity score is only
computed among the keyframes.

2. Calculate the relative transform matrices between
every two selected keyframes. For example, Ti ∈
SE(3) and Tj ∈ SE(3) represent the poses of two se-
lected keyframes, and T−1

i Tj is the relative transform
matrix between them.

3. Compute the distance and rotation angle from the
above matrix as shown in Eq. (3). We use Eq. (4)
to calculate the angle, and R is the rotation matrix
part in T−1

i Tj. If the result is smaller than a thresh-
old, these pairs are defined as the ground-truth loop
pairs.

(a) Object-oriented point cloud map.

(b) GUI.

Fig. 10. Dense point cloud map generation with the pro-
posed GUI.

Fig. 11. Generated groundtruth loop pairs.

Di, j = dis
(
T−1

i Tj
)
+angle

(
T−1

i Tj
)

. . . . (3)

θ = arccos
(

tr(R)−1
2

)
, R ∈ SO(3) . . . (4)

The generated ground-truth loop pairs are shown in
Fig. 11, and are denoted by the yellow dashed lines. Each
row on the left is a loop pair, from which it can be seen
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Fig. 12. Human existence pairs in the Garden Points Walk
dataset.

that there are several types of loop pairs in this dataset:

• A human exists in one of the frames.

• A human exists in both frames, but the posture is
different.

• Static environment.

In addition, we manually selected the human exis-
tence pairs from a popular public dataset in the place
recognition research field called the Gardens Points Walk
dataset [a]. In this dataset, there are some pedestrians
walking in a garden, as shown in Fig. 12.

LCD is a type of binary classification problem, and the
commonly used evaluation metric is the Precision-Recall
(P-R) curve. For comparison using the P-R curve and
Area Under Curve (AUC) in Figs. 13 and 14, we plotted
the original result of each layer to determine the most ac-
curate layer for LCD. From the results, it can be seen that
the mid-layer pooling 4 is more accurate than the other
layers in VGG-16 and the BoW used in ORB-SLAM2.
This is because the initial layers only focus on the edge
information, which is similar to manually hand-crafted
features, meanwhile, the deeper layers retain the semantic
information but lose the spatial information. Because the
VGG-16 network architecture is used for object classifica-
tion, it only focuses on the types of objects in the image.
A similar conclusion was reached in [19] with regard to
the AlexNet architecture.

In addition, because we employ the union binary mask,
the keypoints extracted from humans can be filtered in the
traditional BoW method. It can be observed that the per-
formance of not only the traditional BoW method with
a union mask but also that of the most accurate layer
pooling 4 is improved using the proposed method. We
also tested the performance of each layer used in VGG-16
with the union mask, as shown in Table 2. Our proposed
method improved the result of each layer and the most ac-
curate result is obtained from the mid-layer pooling 4 in
VGG-16 architecture.

We also used a dataset published in [28], in which a
walking human appears in the loop closure position, as
shown in Fig. 15. In this dataset, two humans walk along
a circular trajectory around a meeting table in an office.
When ORB-SLAM2 is applied to this dataset, the esti-
mated trajectory not only drifts, as shown in Fig. 16(a),

Fig. 13. Precision-recall curve for the dynamic dataset
fr2 desk with person.

Fig. 14. Precision-recall curve for the Gardens points walk
dataset.

but the loop closure in Fig. 16(b) is also not detected.
However, using the similarity score calculated by the pro-
posed method, our SLAM framework can detect and cor-
rect the loop, as shown in Fig. 17. The difference be-
tween Figs. 16(a) and 17(a) lies in the improvement in
the visual odometry obtained with the uniformly filtered
keypoint extraction in the matching process introduced in
our previous work [4].

A prior study [28] reported the detection and correction
of the loop in this dataset. However, their system required
not only the information from the RGB-D camera but also
the state estimation from the wheel encoder. In contrast,
our framework requires only one camera as hardware.

4.2. Comparison of Visual Odometry and Map
Reconstruction

In this subsection, we evaluate the visual odometry and
map reconstruction of our proposed framework on the dy-
namic sequence of the TUM RGB-D dataset. The scenes
in this dynamic dataset are divided into low and high dy-
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Table 2. AUC comparisons between each layer in VGG-16 and BoW with and without the union mask.

Datasets \AUC \Layer pool 1 pool 2 pool 3 pool 4 pool 5 fc 6 fc 7 BoW
TUM

dataset
without mask 0.294 0.363 0.454 0.513 0.474 0.418 0.350 0.305

with mask 0.356 0.431 0.559 0.659 0.512 0.498 0.412 0.387
Garden points
walk dataset

without mask 0.165 0.299 0.367 0.565 0.511 0.281 0.191 0.494
with mask 0.211 0.373 0.434 0.732 0.662 0.358 0.249 0.614

(a) The first time a human occurs at
the loop closure position.

(b) The second time a human occurs
at the loop closure position.

Fig. 15. Human occurrences at the loop closure position.

(a) Trajectory before the loop closure event.

(b) Trajectory after the loop closure event.

Fig. 16. ORB-SLAM2 fails to detect and correct the loop in
a dynamic environment.

namic scenes. When humans sit at a desk, talk with each
other, and gesticulate, this is defined as a low dynamic
scene. When walking in an office scene, it is defined as a
high dynamic scene.

Table 3 compares the results of Dynamic-SLAM [8]
and ORB-SLAM2 with semantic segmentation using the
ATE [29] and a common metric for the evaluation of vi-

(a) Trajectory before the loop closure event.

(b) Trajectory after the loop closure event.

Fig. 17. Detection and correction of the loop using the pro-
posed method in a dynamic environment.

sual odometry called the relative pose error (RPE) [30].
We compared these two methods because both use real-
time and deep learning-based segmentation methods. Ac-
cording to Table 3, the accuracy of ORB-SLAM2 with
semantic segmentation was higher than that of Dynamic-
SLAM in most sequences. Although Dynamic-SLAM is
a monocular SLAM and cannot provide a dense point
cloud map at the back end of the SLAM system, the
proposed framework can provide a dense object-oriented
point cloud map, as shown in Fig. 10(a), and a dense RGB
point cloud map as shown in Fig. 18.

GS and the related method [10] belong to the same cat-
egory, that is, they are suitable for moving object seg-
mentation. GS cannot segment multiple dynamic objects,
and in some high dynamic environments with multiple
dynamic objects, [10] performs better than GS. In con-
trast, in some sequences, there is only one moving human
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Table 3. Accuracy comparison of Dynamic-SLAM [8] and the proposed framework with semantic segmentation (some data from
a previous study [8] are shown).

ATE [cm] RMSE Translation RMSE [cm/frame] RMSE Rotation RMSE [deg/frame] RMSE
TUM RGB-D datasets

Sequence: dynamic objects Dynamic-
SLAM

Semantic
segmentation

Improvement Dynamic-
SLAM

Semantic
segmentation

Improvement Dynamic-
SLAM

Semantic
segmentation

Improvement

fr2/desk with person 1.873 0.286 84.73% 1.958 0.502 74.36% 0.833 0.212 74.55%
fr3/sitting xyz 0.601 0.237 60.57% 0.998 0.404 59.52% 0.613 0.276 54.98%

fr3/sitting halfsphere 1.461 0.967 33.81% 1.451 0.723 50.17% 0.551 0.376 31.76%

Low
dynamic

environment
fr3/sitting rpy 3.448 3.702 −7.37% 4.303 3.876 9.92% 0.991 1.031 −4.04%

fr3/walking xyz 1.324 1.306 1.36% 1.796 0.703 60.86% 0.598 0.372 37.79%
fr3/walking halfsphere 2.139 0.435 79.66% 2.192 0.723 67.02% 0.666 0.353 46.99%

High
dynamic

environment fr3/walking rpy 6.025 0.623 89.66% 5.605 0.423 92.45% 1.149 0.506 55.96%

Fig. 18. Comparisons between the dense RGB point cloud maps. The top row shows the RGB-D images directly projected by the
original ORB-SLAM2 estimated pose, while the bottom row shows the result of our proposed framework.

Table 4. Accuracy comparison of [10] and the proposed framework with GS.

ATE [m] RMSE
RPE translation [m/s]

/ rotation [deg/s] RMSESequence
Reference [4] GS Improvement Reference [4] GS Improvement

fr3 sitting static 0.0066 0.0039 40.91% 0.0077/0.2595 0.0045/0.2238 41.56%/13.76%
fr3 sitting halfsphere 0.0196 0.0165 15.82% 0.0245/0.5643 0.0212/0.5803 13.47%/−2.84%

fr3 walking static 0.3080 0.4156 −34.94% 0.1881/3.2101 0.2423/3.8765 −28.81%/−20.76%

in most frames, such as fr3 sitting halfsphere. Moreover,
in the low dynamic sequences such as fr3 sitting static,
its absolute trajectory error (ATE) and relative pose error
(RPE) are lower than those of [10], as shown in Table 4.

The other difference between these methods is that the
back end of [10] does not contain global optimization and
LCD. In contrast, our proposed framework has these fea-
tures, which improve the accuracy of the entire SLAM
system. Although [10] is an RGB-D SLAM method, it
does not provide a dense point cloud map. In contrast, the
dense point cloud map obtained with GS is shown in our
previous work [4].

In Table 5, we compare the semantic segmentation of
GS and DynaSLAM [12], as both are deep learning-based
methods fused with geometry-based methods. It can be

observed that the accuracies of the two methods are sim-
ilar. This is because although the accuracy of semantic
segmentation [7] (mIoU is approximately 56 from [b]) is
lower than that of the Mask R-CNN [13] (mIoU is approx-
imately 74.4 from [c]) used in DynaSLAM to segment the
human, our proposed framework has an improved CNN-
based LCD method at the back end of the system, which
improves the accuracy of the entire SLAM system.

We also tested our proposed framework using a high
dynamic dataset called HRPSlam [31], which was cap-
tured by a walking humanoid robot. We compared our
method with PFH [32], which is structured based on Elas-
ticFusion [33] and the original ORB-SLAM2, using the
ATE and RPE metrics (data from [32]). The correspond-
ing results are shown in Table 6. Because PFH is not
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Table 5. Comparison between the accuracies of Dy-
naSLAM [12] and the proposed framework with semantic seg-
mentation and GS.

DynaSLAM [12]

Proposed framework
with semantic
segmentation

and GS

ImprovementSequence
(under RGB-D)

RMSE [m] RMSE [m] [%]
w halfsphere 0.025 0.024 4.00

w xyz 0.015 0.017 −13.33
w rpy 0.035 0.032 8.57

w static 0.006 0.006 0
s halfsphere 0.017 0.011 35.29

s xyz 0.015 0.012 20.00

Table 6. Comparison between the accuracies of ORB-SLAM2,
PFH, and the proposed framework with semantic segmentation
on the HRPSlam2 dynamic dataset.

HRPSlam2 Translation ATE Translation RPE
RMSE [m] RMSE [m]

ORB-SLAM2 0.50 0.231
PFH 0.09 0.070

Proposed framework
with semantic segmentation

0.07 0.015

(a) Reference and ORB-SLAM2 results. (b) Reference and results of the proposed framework with se-
mantic segmentation.

Fig. 19. Trajectory comparison with the reference (ground truth).

an open-source software, we only visualized the trajecto-
ries of our framework and ORB-SLAM2 shown in Fig. 19
using evo [d]. We found that our proposed framework
achieves the highest accuracy for this dataset.

5. Conclusions and Discussion

In this study, we addressed three main problems that
arise when conventional SLAM is used in a dynamic envi-
ronment. The proposed framework extracts the keypoints
from the static area in the image and solves the camera
tracking problem. With the accurate pose and semantic la-
bel of each pixel, we can generate an object-oriented point
cloud, which solves the map reconstruction problem. The
LCD was improved using the proposed CNN-based fea-
ture extraction with the union mask method.

Comparisons with related methods were not only con-

ducted using the well-known TUM RGB-D dataset and
benchmark, but also on a high dynamic dataset captured
by a real walking humanoid robot. In addition, we gen-
erated a human LCD dataset for comparing the results
of each layer used in VGG-16. We found that the mid-
layer pooling 4 was the most accurate layer, which was
subsequently used to perform the element-wise multipli-
cation with a binary union mask vector, resulting in fur-
ther improvement in the performance. Finally, we used
a dataset that includes loop closure in a human dynamic
environment to compare the estimated trajectory of the
proposed SLAM framework using the proposed CNN-
based feature extraction with the union mask method and
the trajectory of ORB-SLAM2 with the original BoW
method. Finally, the results of the visual odometry ex-
periment demonstrated that similar or better results could
be obtained compared with the related methods owing to
the uniformly distributed keypoint extractions and dilated
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masks.
Recently, there have been some exciting studies on end-

to-end self-supervised deep learning-based methods for
camera ego-motion estimation, such as Monodepth2 [34].
However, the accumulated error in long-term ego-motion
without global bundle adjustment optimization and loop
closure detection makes it difficult to obtain results com-
parable to those of geometry-based SLAM technology
such as ORB-SLAM2. CNN-SLAM [35] overcomes the
limitations of traditional monocular SLAM, which in-
volves the depth map reconstruction using CNN-predicted
depth fused with ORB-SLAM. However, it does not con-
sider the dynamic environmental conditions of the entire
system and experiments.

Considering multi-view geometry, deep learning (DL),
and their combination, when good quality and sufficient
features are extracted, pure geometry-based SLAM is
more reliable than pure DL, owing to global bundle ad-
justment and LCD at the back end. Because deep learn-
ing can learn features from a large training dataset, it
has better robustness in feature extraction, even in some
challenging environments. To leverage these factors,
we proposed a framework that uses a CNN at the front
end, whereas the back end is a traditional multi-view
geometry-based ORB-SLAM2. The main points of our
work focus on dynamic environments, including camera
tracking, map reconstruction, and loop closure detection.

In addition, it might be interesting to investigate ways
to deeply and tightly couple the semantic information
with SLAM. It is now clear that several parts can use the
semantic information provided by segmentation to solve
the problems occurring in dynamic environments. Fu-
ture research can also focus on methods to further fuse
SLAM with semantic information. In general, there are
still many directions worth exploring for the application
of deep learning to SLAM.
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